Back to Search Start Over

Targeting therapy-resistant lung cancer stem cells via disruption of the AKT/TSPYL5/PTEN positive-feedback loop.

Authors :
Kim IG
Lee JH
Kim SY
Heo CK
Kim RK
Cho EW
Source :
Communications biology [Commun Biol] 2021 Jun 23; Vol. 4 (1), pp. 778. Date of Electronic Publication: 2021 Jun 23.
Publication Year :
2021

Abstract

Cancer stem cells (CSCs) are regarded as essential targets to overcome tumor progression and therapeutic resistance; however, practical targeting approaches are limited. Here, we identify testis-specific Y-like protein 5 (TSPYL5) as an upstream regulator of CSC-associated genes in non-small cell lung cancer cells, and suggest as a therapeutic target for CSC elimination. TSPYL5 elevation is driven by AKT-dependent TSPYL5 phosphorylation at threonine-120 and stabilization via inhibiting its ubiquitination. TSPYL5-pT120 also induces nuclear translocation and functions as a transcriptional activator of CSC-associated genes, ALDH1 and CD44. Also, nuclear TSPYL5 suppresses the transcription of PTEN, a negative regulator of PI3K signaling. TSPYL5-pT120 maintains persistent CSC-like characteristics via transcriptional activation of CSC-associated genes and a positive feedback loop consisting of AKT/TSPYL5/PTEN signaling pathway. Accordingly, elimination of TSPYL5 by inhibiting TSPYL5-pT120 can block aberrant AKT/TSPYL5/PTEN cyclic signaling and TSPYL5-mediated cancer stemness regulation. Our study suggests TSPYL5 be an effective target for therapy-resistant cancer.

Details

Language :
English
ISSN :
2399-3642
Volume :
4
Issue :
1
Database :
MEDLINE
Journal :
Communications biology
Publication Type :
Academic Journal
Accession number :
34163000
Full Text :
https://doi.org/10.1038/s42003-021-02303-x