Back to Search
Start Over
Theoretical Design, Synthesis, and In Vitro Neurobiological Applications of a Highly Efficient Two-Photon Caged GABA Validated on an Epileptic Case.
- Source :
-
ACS omega [ACS Omega] 2021 Jun 03; Vol. 6 (23), pp. 15029-15045. Date of Electronic Publication: 2021 Jun 03 (Print Publication: 2021). - Publication Year :
- 2021
-
Abstract
- In this paper, we present an additional, new cage-GABA compound, called 4-amino-1-(4'-dimethylaminoisopropoxy-5',7'-dinitro-2',3'-dihydro-indol-1-yl)-1-oxobutane-γ-aminobutyric acid (iDMPO-DNI-GABA), and currently, this compound is the only photoreagent, which can be applied for GABA uncaging without experimental compromises. By a systematic theoretical design and successful synthesis of several compounds, the best reagent exhibits a high two-photon efficiency within the 700-760 nm range with excellent pharmacological behavior, which proved to be suitable for a complex epileptic study. Quantum chemical design showed that the optimal length of the cationic side chain enhances the two-photon absorption by 1 order of magnitude due to the cooperating internal hydrogen bonding to the extra nitro group on the core. This feature increased solubility while suppressing membrane permeability. The efficiency was demonstrated in a systematic, wide range of in vitro single-cell neurophysiological experiments by electrophysiological as well as calcium imaging techniques. Scalable inhibitory ion currents were elicited by iDMPO-DNI-GABA with appropriate spatial-temporal precision, blocking both spontaneous and evoked cell activity with excellent efficiency. Additionally, to demonstrate its applicability in a real neurobiological study, we could smoothly and selectively modulate neuronal activities during artificial epileptic rhythms first time in a neural network of GCaMP6f transgenic mouse brain slices.<br />Competing Interests: The authors declare no competing financial interest.<br /> (© 2021 The Authors. Published by American Chemical Society.)
Details
- Language :
- English
- ISSN :
- 2470-1343
- Volume :
- 6
- Issue :
- 23
- Database :
- MEDLINE
- Journal :
- ACS omega
- Publication Type :
- Academic Journal
- Accession number :
- 34151084
- Full Text :
- https://doi.org/10.1021/acsomega.1c01164