Back to Search
Start Over
Investigating the release of inflammatory cytokines in a human model of incontinence-associated dermatitis.
- Source :
-
Journal of tissue viability [J Tissue Viability] 2021 Aug; Vol. 30 (3), pp. 427-433. Date of Electronic Publication: 2021 Jun 11. - Publication Year :
- 2021
-
Abstract
- Incontinence-associated dermatitis (IAD) is a painful complication in elderly patients, leading to reduced quality of life. Despite recent attention, its underlying inflammatory mechanisms remain poorly understood. This study was designed to quantify the release of inflammatory cytokines in a human model of IAD. The left volar forearm of ten healthy volunteers was exposed to synthetic urine and synthetic faeces for 2 h, simulating the effects of urinary and faecal incontinence, respectively, and the subsequent cytokine response compared to that of an untreated control site. Inflammatory cytokines were collected using both the Sebutape® absorption method and dermal microdialysis and quantified using immunoassays. Results from the former demonstrated an upregulation in IL-1α, IL-1RA and TNF-α. Synthetic urine caused a higher median increase in IL-1α from baseline compared to synthetic faeces, whereas synthetic faeces were associated with significantly higher median TNF-α levels compared to synthetic urine (p = 0.01). An increase in IL-1α/IL-1RA ratio was also observed with significant differences evident following exposure to synthetic urine (p = 0.047). Additionally, microdialysis revealed a time-dependent increase in IL-1β and IL-8 following exposure of up to 120 min to synthetic urine and synthetic faeces, respectively. This study demonstrated the suitability of both sampling approaches to recover quantifiable cytokine levels in biofluids for the assessment of skin status following exposure to synthetic fluids associated with incontinence. Findings suggest some differences in the inflammatory mechanisms of IAD, depending on moisture source, and the potential of the cytokines, IL-1α and TNF-α, as responsive markers of early skin damage caused by incontinence.<br /> (Copyright © 2021 Tissue Viability Society. Published by Elsevier Ltd. All rights reserved.)
- Subjects :
- Cytokines blood
Dermatitis, Contact blood
Dermatitis, Contact physiopathology
Fecal Incontinence blood
Fecal Incontinence physiopathology
Humans
Interleukin 1 Receptor Antagonist Protein analysis
Interleukin 1 Receptor Antagonist Protein blood
Interleukin-1alpha analysis
Interleukin-1alpha blood
Tumor Necrosis Factor-alpha analysis
Tumor Necrosis Factor-alpha blood
Urinary Incontinence blood
Urinary Incontinence physiopathology
Cytokines analysis
Dermatitis, Contact etiology
Fecal Incontinence complications
Urinary Incontinence complications
Subjects
Details
- Language :
- English
- ISSN :
- 0965-206X
- Volume :
- 30
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Journal of tissue viability
- Publication Type :
- Academic Journal
- Accession number :
- 34144890
- Full Text :
- https://doi.org/10.1016/j.jtv.2021.06.005