Back to Search
Start Over
Genetic diversity of vector-borne pathogens in spotted and brown hyenas from Namibia and Tanzania relates to ecological conditions rather than host taxonomy.
- Source :
-
Parasites & vectors [Parasit Vectors] 2021 Jun 16; Vol. 14 (1), pp. 328. Date of Electronic Publication: 2021 Jun 16. - Publication Year :
- 2021
-
Abstract
- Background: Improved knowledge on vector-borne pathogens in wildlife will help determine their effect on host species at the population and individual level and whether these are affected by anthropogenic factors such as global climate change and landscape changes. Here, samples from brown hyenas (Parahyaena brunnea) from Namibia (BHNA) and spotted hyenas (Crocuta crocuta) from Namibia (SHNA) and Tanzania (SHTZ) were screened for vector-borne pathogens to assess the frequency and genetic diversity of pathogens and the effect of ecological conditions and host taxonomy on this diversity.<br />Methods: Tissue samples from BHNA (n = 17), SHNA (n = 19) and SHTZ (n = 25) were analysed by PCRs targeting Anaplasmataceae, Rickettsia spp., piroplasms, specifically Babesia lengau-like piroplasms, Hepatozoidae and filarioids. After sequencing, maximum-likelihood phylogenetic analyses were conducted.<br />Results: The relative frequency of Anaplasmataceae was significantly higher in BHNA (82.4%) and SHNA (100.0%) than in SHTZ (32.0%). Only Anaplasma phagocytophilum/platys-like and Anaplasma bovis-like sequences were detected. Rickettsia raoultii was found in one BHNA and three SHTZ. This is the first report of R. raoultii from sub-Saharan Africa. Babesia lengau-like piroplasms were found in 70.6% of BHNA, 88.9% of SHNA and 32.0% of SHTZ, showing higher sequence diversity than B. lengau from South African cheetahs (Acinonyx jubatus). In one SHTZ, a Babesia vogeli-like sequence was identified. Hepatozoon felis-like parasites were identified in 64.7% of BHNA, 36.8% of SHNA and 44.0% of SHTZ. Phylogenetic analysis placed the sequences outside the major H. felis cluster originating from wild and domestic felids. Filarioids were detected in 47.1% of BHNA, 47.4% of SHNA and 36.0% of SHTZ. Phylogenetic analysis revealed high genetic diversity and suggested the presence of several undescribed species. Co-infections were frequently detected in SHNA and BHNA (BHNA median 3 pathogens, range 1-4; SHNA median 3 pathogens, range 2-4) and significantly rarer in SHTZ (median 1, range 0-4, 9 individuals uninfected).<br />Conclusions: The frequencies of all pathogens groups were high, and except for Rickettsia, multiple species and genotypes were identified for each pathogen group. Ecological conditions explained pathogen identity and diversity better than host taxonomy.
- Subjects :
- Anaplasmataceae classification
Anaplasmataceae genetics
Anaplasmataceae isolation & purification
Anaplasmataceae Infections microbiology
Anaplasmataceae Infections veterinary
Animals
Animals, Wild classification
Animals, Wild microbiology
Animals, Wild parasitology
Babesia classification
Babesia genetics
Babesia isolation & purification
Babesiosis parasitology
Coccidia classification
Coccidia genetics
Coccidia isolation & purification
Coccidiosis parasitology
Coccidiosis veterinary
Genetic Variation
Hyaenidae classification
Namibia
Phylogeny
Rickettsia classification
Rickettsia genetics
Rickettsia isolation & purification
Rickettsia Infections microbiology
Tanzania
Tick-Borne Diseases epidemiology
Tick-Borne Diseases microbiology
Tick-Borne Diseases parasitology
Hyaenidae microbiology
Hyaenidae parasitology
Rickettsia Infections veterinary
Tick-Borne Diseases veterinary
Subjects
Details
- Language :
- English
- ISSN :
- 1756-3305
- Volume :
- 14
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Parasites & vectors
- Publication Type :
- Academic Journal
- Accession number :
- 34134753
- Full Text :
- https://doi.org/10.1186/s13071-021-04835-x