Back to Search Start Over

Remdesivir inhibits the polymerases of the novel filoviruses Lloviu and Bombali virus.

Authors :
Bodmer BS
Zierke L
Wendt L
Greßler J
Groseth A
Hoenen T
Source :
Antiviral research [Antiviral Res] 2021 Aug; Vol. 192, pp. 105120. Date of Electronic Publication: 2021 Jun 12.
Publication Year :
2021

Abstract

In recent years, a number of novel filoviruses (e.g. Lloviu virus (LLOV) and Bombali virus (BOMV)) have been discovered. While antibody-based therapeutics have recently been approved for treatment of infections with the filovirus Ebola virus (EBOV), no treatment options for novel filoviruses currently exist. Further, the development of antivirals against them is complicated by the fact that only sequence information, but no actual virus isolates, are available. To address this issue, we developed a reverse genetics-based minigenome system for BOMV, which allows us to assess the activity of the BOMV polymerase. Together with similar systems that we have developed for other filoviruses in the past (i.e. LLOV and Reston virus (RESTV)), we then assessed the efficiency of remdesivir, a known inhibitor of the EBOV polymerase that has recently been tested in a clinical trial for efficacy against Ebola disease. We show that remdesivir is indeed also active against the polymerases of BOMV, LLOV, and RESTV, with comparable IC <subscript>50</subscript> values to its activity against EBOV. This suggests that treatment with remdesivir might represent a viable option in case of infections with novel filoviruses.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1872-9096
Volume :
192
Database :
MEDLINE
Journal :
Antiviral research
Publication Type :
Academic Journal
Accession number :
34126139
Full Text :
https://doi.org/10.1016/j.antiviral.2021.105120