Back to Search
Start Over
Morphology-Dependent Ambient-Condition Growth of Perovskite Nanocrystals for Enhanced Stability in Photoconversion Device.
- Source :
-
The journal of physical chemistry letters [J Phys Chem Lett] 2021 Jun 17; Vol. 12 (23), pp. 5631-5638. Date of Electronic Publication: 2021 Jun 10. - Publication Year :
- 2021
-
Abstract
- CsPbBr <subscript>3</subscript> perovskite nanocrystals with two different dimensionalities were synthesized at different temperatures and then integrated as optoelectronic transducers into transistor-type photoconversion devices. Postsynthesis transformation was observed for two-dimensional (2D) nanoplatelets, while the transformation was rarely found in 3D nanocubes. At ambient temperature and pressure, neighboring nanoplatelets made facet-to-facet contact and then fused into larger 2D nanoplatelets (2-5 times) without defects. The coalescence of 2D nanoplatelets at the ambient condition lowered the density of defects at the surface of the nanocrystals and thus could facilitate effective and stable photoconversion behavior in the nanocrystal film integrated into the device. Consequently, the ambient-condition aging of 2D nanoplatelets on device substrate led to 3 times higher retention in photoconversion performance. Importantly, these results provide a new concept of how perovskite nanocrystals can be integrated into a device for enhanced stability in device performance.
Details
- Language :
- English
- ISSN :
- 1948-7185
- Volume :
- 12
- Issue :
- 23
- Database :
- MEDLINE
- Journal :
- The journal of physical chemistry letters
- Publication Type :
- Academic Journal
- Accession number :
- 34110154
- Full Text :
- https://doi.org/10.1021/acs.jpclett.1c01376