Back to Search Start Over

Melatonin improves the antioxidant capacity in cardiac tissue of Wistar rats after exhaustive exercise.

Authors :
Ishihara R
Barros MP
Silva CMD
Borges LDS
Hatanaka E
Lambertucci RH
Source :
Free radical research [Free Radic Res] 2021 Jul; Vol. 55 (7), pp. 776-791. Date of Electronic Publication: 2021 Jun 24.
Publication Year :
2021

Abstract

We investigated the effects of melatonin on the onset and resolution of the oxidative stress in the cardiac muscle in melatonin-treated and nontreated rats subjected to an exhaustive exercise session. Forty male rats were divided into: melatonin-treated (20 mg/kg supplemented for 10 d) and control. On the 10th day, each group was subdivided according to euthanasia moments: control or melatonin-treated not exercised (C0h and M0h); immediately after the exercise (CIA and MIA); and 2 h after exercise (C2h and M2h). The heart of animals was removed and the levels of oxidative stress index (OSI) and the formation of thiobarbituric acid reactive substances (TBARS), protein carbonyl, and the activities of aconitase, catalase (CAT), glutathione peroxidase (GPx), and superoxide dismutase (SOD) were evaluated. Total antioxidant status (TAS), total oxidant status (TOS), and the protein expression of CAT, GPx, and SOD was also measured. Our data revealed significant differences on: (i) OSI ( p =.029), CAT activity ( p =.016), CAT content ( p <.001), GPx content ( p =.014), reduced glutathione levels ( p <.001), and aconitase activity ( p <.001) for interaction of melatonin; (ii) GPx activity ( p =.005), reduced glutathione ( p =.004), protein carbonyl ( p =.035), and TBARS levels ( p =.028) between groups, and (iii) TBARS levels ( p =.016) for significance between moments. Although the exhaustive exercise protocol imposed mild oxidative stress on the cardiac tissue of rats, melatonin induced antioxidant responses that rebalanced the redox status of the cardiac tissue, especially after exhaustive exercise.

Details

Language :
English
ISSN :
1029-2470
Volume :
55
Issue :
7
Database :
MEDLINE
Journal :
Free radical research
Publication Type :
Academic Journal
Accession number :
34100318
Full Text :
https://doi.org/10.1080/10715762.2021.1939024