Back to Search Start Over

Investigating the response of electrogenic metabolism to salinity in saline wastewater treatment for optimal energy output via microbial fuel cells.

Authors :
Xiao Y
Lin S
Hao T
Source :
The Science of the total environment [Sci Total Environ] 2021 Aug 20; Vol. 783, pp. 147092. Date of Electronic Publication: 2021 Apr 16.
Publication Year :
2021

Abstract

In the current study, MFCs treating saline wastewater with the different conductivities of 5.0 ± 0.2, 7.7 ± 0.6, 10.5 ± 0.9, 13.0 ± 1.0, 15.3 ± 1.0, and 16.0 ± 0.1 mS/cm were investigated. Increasing salinity drives a considerable shift of microbial communities, and it also affects metabolic pathways in MFCs. Overwhelming acetate oxidizing electron transfer with moderate conductivities between 7.7 and 13.0 mS/cm led to high energy outputs. Power generation at the low conductivities of less than 7.7 mS/cm was restricted by the competition between fermentative bacteria (e.g., Lactobacillus) and exoelectrogens (e.g., Pseudomonas and Shewanella) for substrate utilization. Increasing salinity beyond 13 mS/cm suppressed the fermentation of glucose to butyrate. It also induced sulfidogenesis; sulfide oxidizing bacteria Desulfovibrio (5.2%), Desulfuromonas (3.7%) and exoelectrogen Pseudomonas (1.1%) formed a sulfur-driven current production, thereby resulting in low energy outputs. The present study revealed the effects of ionic conductivity on electrical energy production and provided insights into the dynamics of the MFCs substrate utilization.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)

Details

Language :
English
ISSN :
1879-1026
Volume :
783
Database :
MEDLINE
Journal :
The Science of the total environment
Publication Type :
Academic Journal
Accession number :
34088164
Full Text :
https://doi.org/10.1016/j.scitotenv.2021.147092