Back to Search Start Over

Modeling of aerosol transmission of airborne pathogens in ICU rooms of COVID-19 patients with acute respiratory failure.

Authors :
Crawford C
Vanoli E
Decorde B
Lancelot M
Duprat C
Josserand C
Jilesen J
Bouadma L
Timsit JF
Source :
Scientific reports [Sci Rep] 2021 Jun 03; Vol. 11 (1), pp. 11778. Date of Electronic Publication: 2021 Jun 03.
Publication Year :
2021

Abstract

The COVID-19 pandemic has generated many concerns about cross-contamination risks, particularly in hospital settings and Intensive Care Units (ICU). Virus-laden aerosols produced by infected patients can propagate throughout ventilated rooms and put medical personnel entering them at risk. Experimental results found with a schlieren optical method have shown that the air flows generated by a cough and normal breathing were modified by the oxygenation technique used, especially when using High Flow Nasal Canulae, increasing the shedding of potentially infectious airborne particles. This study also uses a 3D Computational Fluid Dynamics model based on a Lattice Boltzmann Method to simulate the air flows as well as the movement of numerous airborne particles produced by a patient's cough within an ICU room under negative pressure. The effects of different mitigation scenarii on the amount of aerosols potentially containing SARS-CoV-2 that are extracted through the ventilation system are investigated. Numerical results indicate that adequate bed orientation and additional air treatment unit positioning can increase by 40% the number of particles extracted and decrease by 25% the amount of particles deposited on surfaces 45s after shedding. This approach could help lay the grounds for a more comprehensive way to tackle contamination risks in hospitals, as the model can be seen as a proof of concept and be adapted to any room configuration.

Details

Language :
English
ISSN :
2045-2322
Volume :
11
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
34083700
Full Text :
https://doi.org/10.1038/s41598-021-91265-5