Back to Search Start Over

Arginase inhibition by rhaponticin increases L-arginine concentration that contributes to Ca 2+ -dependent eNOS activation.

Authors :
Koo BH
Lee J
Jin Y
Lim HK
Ryoo S
Source :
BMB reports [BMB Rep] 2021 Oct; Vol. 54 (10), pp. 516-521.
Publication Year :
2021

Abstract

Although arginase primarily participates in the last reaction of the urea cycle, we have previously demonstrated that arginase II is an important cytosolic calcium regulator through spermine production in a p32-dependent manner. Here, we demonstrated that rhaponticin (RPT) is a novel medicinal-plant arginase inhibitor and investigated its mechanism of action on Ca <superscript>2+</superscript> -dependent endothelial nitric oxide synthase (eNOS) activation. RPT was uncompetitively inhibited for both arginases I and II prepared from mouse liver and kidney. It also inhibited arginase activity in both aorta and human umbilical vein endothelial cells (HUVECs). Using both microscope and FACS analyses, RPT treatments induced increases in cytosolic Ca <superscript>2+</superscript> levels using Fluo-4 AM as a calcium indicator. Increased cytosolic Ca <superscript>2+</superscript> elicited the phosphorylations of both CaMKII and eNOS Ser1177 in a time-dependent manner. RPT incubations also increased intracellular L-arginine (L-Arg) levels and activated the CaMKII/AMPK/Akt/eNOS signaling cascade in HUVECs. Treatment of L-Arg and ABH, arginase inhibitor, increased intracellular Ca <superscript>2+</superscript> concentrations and activated CaMKII-dependent eNOS activation in ECs of WT mice, but, the effects were not observed in ECs of inositol triphosphate receptor type 1 knockout (IP3R1 <superscript>-/-</superscript> ) mice. In the aortic endothelium of WT mice, RPT also augmented nitric oxide (NO) production and attenuated reactive oxygen species (ROS) generation. In a vascular tension assay using RPT-treated aortic tissue, cumulative vasorelaxant responses to acetylcholine (Ach) were enhanced, and phenylephrine (PE)-dependent vasoconstrictive responses were retarded, although sodium nitroprusside and KCl responses were not different. In this study, we present a novel mechanism for RPT, as an arginase inhibitor, to increase cytosolic Ca <superscript>2+</superscript> concentration in a L-Arg-dependent manner and enhance endothelial function through eNOS activation. [BMB Reports 2021; 54(10): 516-521].

Details

Language :
English
ISSN :
1976-670X
Volume :
54
Issue :
10
Database :
MEDLINE
Journal :
BMB reports
Publication Type :
Academic Journal
Accession number :
34078530