Back to Search
Start Over
Collagen analogs with phosphorylcholine are inflammation-suppressing scaffolds for corneal regeneration from alkali burns in mini-pigs.
- Source :
-
Communications biology [Commun Biol] 2021 May 21; Vol. 4 (1), pp. 608. Date of Electronic Publication: 2021 May 21. - Publication Year :
- 2021
-
Abstract
- The long-term survival of biomaterial implants is often hampered by surgery-induced inflammation that can lead to graft failure. Considering that most corneas receiving grafts are either pathological or inflamed before implantation, the risk of rejection is heightened. Here, we show that bioengineered, fully synthetic, and robust corneal implants can be manufactured from a collagen analog (collagen-like peptide-polyethylene glycol hybrid, CLP-PEG) and inflammation-suppressing polymeric 2-methacryloyloxyethyl phosphorylcholine (MPC) when stabilized with the triazine-based crosslinker 4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium chloride. The resulting CLP-PEG-MPC implants led to reduced corneal swelling, haze, and neovascularization in comparison to CLP-PEG only implants when grafted into a mini-pig cornea alkali burn model of inflammation over 12 months. Implants incorporating MPC allowed for faster nerve regeneration and recovery of corneal sensation. CLP-PEG-MPC implants appear to be at a more advanced stage of regeneration than the CLP-PEG only implants, as evidenced by the presence of higher amounts of cornea-specific type V collagen, and a corresponding decrease in the presence of extracellular vesicles and exosomes in the corneal stroma, in keeping with the amounts present in healthy, unoperated corneas.
- Subjects :
- Animals
Biocompatible Materials chemistry
Burns, Chemical pathology
Collagen chemistry
Humans
Hydrogels chemistry
Inflammation etiology
Inflammation pathology
Male
Mice
Mice, Inbred C57BL
Swine
Swine, Miniature
Alkalies toxicity
Burns, Chemical complications
Collagen pharmacology
Cornea cytology
Hydrogels administration & dosage
Inflammation prevention & control
Phosphorylcholine chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 2399-3642
- Volume :
- 4
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Communications biology
- Publication Type :
- Academic Journal
- Accession number :
- 34021240
- Full Text :
- https://doi.org/10.1038/s42003-021-02108-y