Back to Search Start Over

Bis-(1,2,4-triazin-3-yl) ligand structure driven selectivity reversal between Am 3+ and Cm 3+ : solvent extraction and DFT studies.

Authors :
Bhattacharyya A
Ansari SA
Karthikeyan NS
Ravichandran C
Venkatachalapathy B
Rao TS
Seshadri H
Mohapatra PK
Source :
Dalton transactions (Cambridge, England : 2003) [Dalton Trans] 2021 Jun 08; Vol. 50 (22), pp. 7783-7790.
Publication Year :
2021

Abstract

Selectivity between Am3+ and Cm3+ was investigated after their aqueous complexation with three structurally tailored hydrophilic bis-(1,2,4-triazin-3-yl) ligands followed by their extraction with N,N,N'N'-tetraoctyl diglycolamide (TODGA) dissolved in an ionic liquid (C4mim·Tf2N). The three hydrophilic ligands used were SO3PhBTP, SO3PhBTBP, and SO3PhBTPhen. It was evident from the solvent extraction studies that SO3PhBTP formed a stronger complex with Cm3+ than with Am3+, but SO3PhBTPhen showed better complexation ability for Am3+ than for Cm3+, and SO3PhBTBP showed no selectivity for the two actinide ions. DFT calculations indicated that the coordinating 'N' atoms in BTP were more co-planar in the complex and this co-planarity was higher in the Cm3+ complex as compared to that in Am3+. In the case of BTBP and BTPhen ligands, on the other hand, the co-planarity was more pronounced in the Am3+ complexes. Mayer's bond order calculations of M-N bonds in the complexes also indicated a reversal of the complexation ability of the BTP and BTPhen ligands for Am3+ and Cm3+. Calculations of the complexation energies further supported the higher selectivity of the BTP ligand for Am3+ by -52.0 kJ mol-1, and better selectivity of the BTPhen ligand for Cm3+ by -24.7 kJ mol-1.

Details

Language :
English
ISSN :
1477-9234
Volume :
50
Issue :
22
Database :
MEDLINE
Journal :
Dalton transactions (Cambridge, England : 2003)
Publication Type :
Academic Journal
Accession number :
33999062
Full Text :
https://doi.org/10.1039/d1dt00307k