Back to Search
Start Over
Alternative regulatory mechanism for the maintenance of bone homeostasis via STAT5-mediated regulation of the differentiation of BMSCs into adipocytes.
- Source :
-
Experimental & molecular medicine [Exp Mol Med] 2021 May; Vol. 53 (5), pp. 848-863. Date of Electronic Publication: 2021 May 14. - Publication Year :
- 2021
-
Abstract
- STAT5 is a transcription factor that is activated by various cytokines, hormones, and growth factors. Activated STAT5 is then translocated to the nucleus and regulates the transcription of target genes, affecting several biological processes. Several studies have investigated the role of STAT5 in adipogenesis, but unfortunately, its role in adipogenesis remains controversial. In the present study, we generated adipocyte-specific Stat5 conditional knockout (cKO) (Stat5 <superscript>fl/fl</superscript> ;Apn-cre) mice to investigate the role of STAT5 in the adipogenesis of bone marrow mesenchymal stem cells (BMSCs). BMSC adipogenesis was significantly inhibited upon overexpression of constitutively active STAT5A, while it was enhanced in the absence of Stat5 in vitro. In vivo adipose staining and histological analyses revealed increased adipose volume in the bone marrow of Stat5 cKO mice. ATF3 is the target of STAT5 during STAT5-mediated inhibition of adipogenesis, and its transcription is regulated by the binding of STAT5 to the Atf3 promoter. ATF3 overexpression was sufficient to suppress the enhanced adipogenesis of Stat5-deficient adipocytes, and Atf3 silencing abolished the STAT5-mediated inhibition of adipogenesis. Stat5 cKO mice exhibited reduced bone volume due to an increase in the osteoclast number, and coculture of bone marrow-derived macrophages with Stat5 cKO adipocytes resulted in enhanced osteoclastogenesis, suggesting that an increase in the adipocyte number may contribute to bone loss. In summary, this study shows that STAT5 is a negative regulator of BMSC adipogenesis and contributes to bone homeostasis via direct and indirect regulation of osteoclast differentiation; therefore, it may be a leading target for the treatment of both obesity and bone loss-related diseases.
- Subjects :
- Adipocytes cytology
Adipogenesis genetics
Animals
Bone and Bones diagnostic imaging
Bone and Bones pathology
Cells, Cultured
Disease Models, Animal
Humans
Mesenchymal Stem Cells cytology
Mice
Mice, Knockout
Mice, Transgenic
Osteogenesis genetics
Protein Binding
STAT5 Transcription Factor genetics
Signal Transduction
Adipocytes metabolism
Bone and Bones metabolism
Cell Differentiation
Gene Expression Regulation
Homeostasis
Mesenchymal Stem Cells metabolism
STAT5 Transcription Factor metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 2092-6413
- Volume :
- 53
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- Experimental & molecular medicine
- Publication Type :
- Academic Journal
- Accession number :
- 33990690
- Full Text :
- https://doi.org/10.1038/s12276-021-00616-9