Back to Search Start Over

Efficient implementation of optical scanning holography in cancelable biometrics.

Authors :
Abd El-Samie FE
Nassar RM
Safan M
Abdelhamed MA
Khalaf AAM
El Banby GM
Zahran O
El-Rabaie EM
Mohamed AA
El-Dokany IM
H Ahmed H
El-Khamy S
Ramadan N
Soliman RF
El-Shafai W
Source :
Applied optics [Appl Opt] 2021 May 01; Vol. 60 (13), pp. 3659-3667.
Publication Year :
2021

Abstract

This paper presents a new trend in biometric security systems, which is cancelable multi-biometrics. In general, traditional biometric systems depend on a single biometric for identification. These traditional systems are subject to different types of attacks. In addition, a biometric signature may be lost in hacking scenarios; for example, in the case of intrusion, biometric signatures can be stolen forever. To reduce the risk of losing biometric signatures, the trend of cancelable biometrics has evolved by using either deformed or encrypted versions of biometrics for verification. In this paper, several biometric traits for the same person are treated to obtain a single cancelable template. First, optical scanning holography (OSH) is applied during the acquisition of each biometric. The resulting outputs are then compressed simultaneously to generate a unified template based on the energy compaction property of the discrete cosine transform (DCT). Hence, the OSH is used in the proposed approach as a tool to generate deformed versions of human biometrics in order to get the unified biometric template through DCT compression. With this approach, we guarantee the possibility of using multiple biometrics of the same user to increase security, as well as privacy of the new biometric template through utilization of the OSH. Simulation results prove the robustness of the proposed cancelable multi-biometric approach in noisy environments.

Details

Language :
English
ISSN :
1539-4522
Volume :
60
Issue :
13
Database :
MEDLINE
Journal :
Applied optics
Publication Type :
Academic Journal
Accession number :
33983298
Full Text :
https://doi.org/10.1364/AO.415523