Back to Search Start Over

Cancer-Associated Fibroblasts in Pancreatic Ductal Adenocarcinoma Determine Response to SLC7A11 Inhibition.

Authors :
Sharbeen G
McCarroll JA
Akerman A
Kopecky C
Youkhana J
Kokkinos J
Holst J
Boyer C
Erkan M
Goldstein D
Timpson P
Cox TR
Pereira BA
Chitty JL
Fey SK
Najumudeen AK
Campbell AD
Sansom OJ
Ignacio RMC
Naim S
Liu J
Russia N
Lee J
Chou A
Johns A
Gill AJ
Gonzales-Aloy E
Gebski V
Guan YF
Pajic M
Turner N
Apte MV
Davis TP
Morton JP
Haghighi KS
Kasparian J
McLean BJ
Setargew YF
Phillips PA
Source :
Cancer research [Cancer Res] 2021 Jul 01; Vol. 81 (13), pp. 3461-3479. Date of Electronic Publication: 2021 May 12.
Publication Year :
2021

Abstract

Cancer-associated fibroblasts (CAF) are major contributors to pancreatic ductal adenocarcinoma (PDAC) progression through protumor signaling and the generation of fibrosis, the latter of which creates a physical barrier to drugs. CAF inhibition is thus an ideal component of any therapeutic approach for PDAC. SLC7A11 is a cystine transporter that has been identified as a potential therapeutic target in PDAC cells. However, no prior study has evaluated the role of SLC7A11 in PDAC tumor stroma and its prognostic significance. Here we show that high expression of SLC7A11 in human PDAC tumor stroma, but not tumor cells, is independently prognostic of poorer overall survival. Orthogonal approaches showed that PDAC-derived CAFs are highly dependent on SLC7A11 for cystine uptake and glutathione synthesis and that SLC7A11 inhibition significantly decreases CAF proliferation, reduces their resistance to oxidative stress, and inhibits their ability to remodel collagen and support PDAC cell growth. Importantly, specific ablation of SLC7A11 from the tumor compartment of transgenic mouse PDAC tumors did not affect tumor growth, suggesting the stroma can substantially influence PDAC tumor response to SLC7A11 inhibition. In a mouse orthotopic PDAC model utilizing human PDAC cells and CAFs, stable knockdown of SLC7A11 was required in both cell types to reduce tumor growth, metastatic spread, and intratumoral fibrosis, demonstrating the importance of targeting SLC7A11 in both compartments. Finally, treatment with a nanoparticle gene-silencing drug against SLC7A11, developed by our laboratory, reduced PDAC tumor growth, incidence of metastases, CAF activation, and fibrosis in orthotopic PDAC tumors. Overall, these findings identify an important role of SLC7A11 in PDAC-derived CAFs in supporting tumor growth. SIGNIFICANCE: This study demonstrates that SLC7A11 in PDAC stromal cells is important for the tumor-promoting activity of CAFs and validates a clinically translatable nanomedicine for therapeutic SLC7A11 inhibition in PDAC.<br /> (©2021 American Association for Cancer Research.)

Details

Language :
English
ISSN :
1538-7445
Volume :
81
Issue :
13
Database :
MEDLINE
Journal :
Cancer research
Publication Type :
Academic Journal
Accession number :
33980655
Full Text :
https://doi.org/10.1158/0008-5472.CAN-20-2496