Back to Search Start Over

Association of urinary ketamine and APOA1 levels with bladder dysfunction in ketamine abusers revealed via proteomics and targeted metabolite analyses.

Authors :
Liu JC
Chen YT
Hsieh YJ
Wu CC
Huang MC
Hsu YC
Wu CT
Chen CK
Dash S
Yu JS
Source :
Scientific reports [Sci Rep] 2021 May 05; Vol. 11 (1), pp. 9583. Date of Electronic Publication: 2021 May 05.
Publication Year :
2021

Abstract

Chronic ketamine abuse is associated with bladder dysfunction and cystitis. However, the effects of ketamine abuse on the urinary proteome profile and the correlations among urinary proteins, urinary ketamine (and metabolites) and clinicopathological features of ketamine-induced bladder dysfunction remain to be established. Here, we recruited 56 ketamine abusers (KA) and 40 age-matched healthy controls (HC) and applied the iTRAQ-based proteomics approach to unravel quantitative changes in the urine proteome profile between the two groups. Many of the differentially regulated proteins are involved in the complement and coagulation cascades and/or fibrotic disease. Among them, a significant increase in APOA1 levels in KA relative to control samples (392.1 ± 59.9 ng/ml vs. 13.7 ± 32.6 ng/ml, p < 0.0001) was detected via ELISA. Moreover, urinary ketamine, norketamine and dehydronorketamine contents (measured via LC-SRM-MS) were found to be positively correlated with overactive bladder syndrome score (OABSS) and APOA1 levels with urinary RBC, WBC, OABSS and numeric pain rating scale in KA. Collectively, our results may aid in developing new molecular tool(s) for management of ketamine-induced bladder dysfunction. Moreover, information regarding the differentially regulated proteins in urine of KA provides valuable clues to establish the molecular mechanisms underlying ketamine-induced cystitis.

Details

Language :
English
ISSN :
2045-2322
Volume :
11
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
33953300
Full Text :
https://doi.org/10.1038/s41598-021-89089-4