Back to Search Start Over

CM1-driven assembly and activation of yeast γ-tubulin small complex underlies microtubule nucleation.

Authors :
Brilot AF
Lyon AS
Zelter A
Viswanath S
Maxwell A
MacCoss MJ
Muller EG
Sali A
Davis TN
Agard DA
Source :
ELife [Elife] 2021 May 05; Vol. 10. Date of Electronic Publication: 2021 May 05.
Publication Year :
2021

Abstract

Microtubule (MT) nucleation is regulated by the γ-tubulin ring complex (γTuRC), conserved from yeast to humans. In Saccharomyces cerevisiae , γTuRC is composed of seven identical γ-tubulin small complex (γTuSC) sub-assemblies, which associate helically to template MT growth. γTuRC assembly provides a key point of regulation for the MT cytoskeleton. Here, we combine crosslinking mass spectrometry, X-ray crystallography, and cryo-EM structures of both monomeric and dimeric γTuSCs, and open and closed helical γTuRC assemblies in complex with Spc110p to elucidate the mechanisms of γTuRC assembly. γTuRC assembly is substantially aided by the evolutionarily conserved CM1 motif in Spc110p spanning a pair of adjacent γTuSCs. By providing the highest resolution and most complete views of any γTuSC assembly, our structures allow phosphorylation sites to be mapped, surprisingly suggesting that they are mostly inhibitory. A comparison of our structures with the CM1 binding site in the human γTuRC structure at the interface between GCP2 and GCP6 allows for the interpretation of significant structural changes arising from CM1 helix binding to metazoan γTuRC.<br />Competing Interests: AB, AL, AZ, SV, AM, MM, EM, AS, TD, DA No competing interests declared<br /> (© 2021, Brilot et al.)

Details

Language :
English
ISSN :
2050-084X
Volume :
10
Database :
MEDLINE
Journal :
ELife
Publication Type :
Academic Journal
Accession number :
33949948
Full Text :
https://doi.org/10.7554/eLife.65168