Back to Search
Start Over
Matrine treatment reduces retinal ganglion cell apoptosis in experimental optic neuritis.
- Source :
-
Scientific reports [Sci Rep] 2021 May 04; Vol. 11 (1), pp. 9520. Date of Electronic Publication: 2021 May 04. - Publication Year :
- 2021
-
Abstract
- Inflammatory demyelination and axonal injury of the optic nerve are hallmarks of optic neuritis (ON), which often occurs in multiple sclerosis and is a major cause of visual disturbance in young adults. Although a high dose of corticosteroids can promote visual recovery, it cannot prevent permanent neuronal damage. Novel and effective therapies are thus required. Given the recently defined capacity of matrine (MAT), a quinolizidine alkaloid derived from the herb Radix Sophorae flavescens, in immunomodulation and neuroprotection, we tested in this study the effect of matrine on rats with experimental autoimmune encephalomyelitis, an animal model of multiple sclerosis. MAT administration, started at disease onset, significantly suppressed optic nerve infiltration and demyelination, with reduced numbers of Iba1 <superscript>+</superscript> macrophages/microglia and CD4 <superscript>+</superscript> T cells, compared to those from vehicle-treated rats. Increased expression of neurofilaments, an axon marker, reduced numbers of apoptosis in retinal ganglion cells (RGCs). Moreover, MAT treatment promoted Akt phosphorylation and shifted the Bcl-2/Bax ratio back towards an antiapoptotic one, which could be a mechanism for its therapeutic effect in the ON model. Taken as a whole, our results demonstrate that MAT attenuated inflammation, demyelination and axonal loss in the optic nerve, and protected RGCs from inflammation-induced cell death. MAT may therefore have potential as a novel treatment for this disease that may result in blindness.
- Subjects :
- Animals
Axons drug effects
Axons metabolism
CD4-Positive T-Lymphocytes drug effects
CD4-Positive T-Lymphocytes metabolism
Cell Death drug effects
Disease Models, Animal
Encephalomyelitis, Autoimmune, Experimental drug therapy
Encephalomyelitis, Autoimmune, Experimental metabolism
Inflammation drug therapy
Inflammation metabolism
Multiple Sclerosis drug therapy
Multiple Sclerosis metabolism
Optic Nerve drug effects
Optic Nerve metabolism
Optic Neuritis metabolism
Plants, Medicinal chemistry
Rats
Rats, Wistar
Retinal Ganglion Cells metabolism
Signal Transduction drug effects
Matrines
Alkaloids pharmacology
Apoptosis drug effects
Optic Neuritis drug therapy
Quinolizines pharmacology
Retinal Ganglion Cells drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 11
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 33947942
- Full Text :
- https://doi.org/10.1038/s41598-021-89086-7