Back to Search
Start Over
Biochemical characterization of the cyclooxygenase enzyme in penaeid shrimp.
- Source :
-
PloS one [PLoS One] 2021 Apr 22; Vol. 16 (4), pp. e0250276. Date of Electronic Publication: 2021 Apr 22 (Print Publication: 2021). - Publication Year :
- 2021
-
Abstract
- Cyclooxygenase (COX) is a two-step enzyme that converts arachidonic acid into prostaglandin H2, a labile intermediate used in the production of prostaglandin E2 (PGE2) and prostaglandin F2α (PGF2α). In vertebrates and corals, COX must be N-glycosylated on at least two asparagine residues in the N-(X)-S/T motif to be catalytically active. Although COX glycosylation requirement is well-characterized in many species, whether crustacean COXs require N-glycosylation for their enzymatic function have not been investigated. In this study, a 1,842-base pair cox gene was obtained from ovarian cDNA of the black tiger shrimp Penaeus monodon. Sequence analysis revealed that essential catalytic residues and putative catalytic domains of P. monodon COX (PmCOX) were well-conserved in relation to other vertebrate and crustacean COXs. Expression of PmCOX in 293T cells increased levels of secreted PGE2 and PGF2α up to 60- and 77-fold, respectively, compared to control cells. Incubation of purified PmCOX with endoglycosidase H, which cleaves oligosaccharides from N-linked glycoproteins, reduced the molecular mass of PmCOX. Similarly, addition of tunicamycin, which inhibits N-linked glycosylation, in PmCOX-expressing cells resulted in PmCOX protein with lower molecular mass than those obtained from untreated cells, suggesting that PmCOX was N-glycosylated. Three potential glycosylation sites of PmCOX were identified at N79, N170 and N424. Mutational analysis revealed that although all three residues were glycosylated, only mutations at N170 and N424 completely abolished catalytic function. Inhibition of COX activity by ibuprofen treatment also decreased the levels of PGE2 in shrimp haemolymph. This study not only establishes the presence of the COX enzyme in penaeid shrimp, but also reveals that N-glycosylation sites are highly conserved and required for COX function in crustaceans.<br />Competing Interests: The authors have declared that no competing interests exist.
- Subjects :
- Animals
Base Sequence
Cyclooxygenase Inhibitors pharmacology
DNA Mutational Analysis methods
DNA, Complementary genetics
Dinoprost metabolism
Dinoprostone metabolism
Female
Glycosylation drug effects
HEK293 Cells
Hemolymph metabolism
Humans
Ibuprofen pharmacology
Molecular Weight
Ovary metabolism
Prostaglandin-Endoperoxide Synthases chemistry
Signal Transduction drug effects
Signal Transduction genetics
Transfection
Tunicamycin pharmacology
Penaeidae enzymology
Prostaglandin-Endoperoxide Synthases genetics
Prostaglandin-Endoperoxide Synthases metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 16
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 33886622
- Full Text :
- https://doi.org/10.1371/journal.pone.0250276