Back to Search Start Over

Wogonoside attenuates the articular cartilage injury and the infiltration of Th1/Th2-type cytokines in papain-induced osteoarthritis in rat model via inhibiting the NF-κB and ERK1/2 activation.

Authors :
Liu J
Liu S
Pan W
Li Y
Source :
Immunopharmacology and immunotoxicology [Immunopharmacol Immunotoxicol] 2021 Jun; Vol. 43 (3), pp. 343-352. Date of Electronic Publication: 2021 Apr 21.
Publication Year :
2021

Abstract

Objects: Osteoarthritis is the most common joint disease and a major cause of functional limitation and pain in adults. This study aims to investigate the effect of wogonoside (WOG) on the progression of knee osteoarthritis (KOA) in model rats.<br />Materials and Methods: Rats KOA models were established and treated with different doses of WOG (10 mg/kg, 20 mg/kg and 30 mg/kg). The degree of cartilage injury was detected by Mankin scores via HE/Alcian blue staining. The levels of IFN-γ and IL-4 in peripheral blood and synovial fluid and the Th1/Th2 ratio were detected by flow cytometry. The model mice were injected with NF-κB p65 or ERK1/2 inhibitors or activators to further investigate the effect of WOG on KOA.<br />Results: WOG significantly improved cartilage tissue damage and reduced the Mankins score. WOG down-regulated the level of IFN-γ while up-regulated the expression of IL-4, which maintained the balance of Th1/Th2 cells. Further studies showed that the expression of NF-κB p65, phosphorylated p65, cytoplasmic ERK1/2 and nuclear ERK1/2 were all inhibited by WOG. The results of reverse verification experiments showed that the activator of NF-κB p65 and ERK1/2 weakened the protective effect of WOG on KOA, and the inhibitor of NF-κB p65ERK1/2 enhanced the protective effect of WOG on KOA.<br />Conclusions: WOG inhibited the activation of NF-κB and ERK1/2 to alleviate the articular cartilage injury and Th1/th2 cytokine infiltration in KOA rats.

Details

Language :
English
ISSN :
1532-2513
Volume :
43
Issue :
3
Database :
MEDLINE
Journal :
Immunopharmacology and immunotoxicology
Publication Type :
Academic Journal
Accession number :
33881378
Full Text :
https://doi.org/10.1080/08923973.2021.1913503