Back to Search
Start Over
Inhibition of Chikungunya Virus Infection by 4-Hydroxy-1-Methyl-3-(3-morpholinopropanoyl)quinoline-2(1 H )-one (QVIR) Targeting nsP2 and E2 Proteins.
- Source :
-
ACS omega [ACS Omega] 2021 Mar 31; Vol. 6 (14), pp. 9791-9803. Date of Electronic Publication: 2021 Mar 31 (Print Publication: 2021). - Publication Year :
- 2021
-
Abstract
- The re-emergence of Chikungunya virus (CHIKV) infection in humans with no approved antiviral therapies or vaccines is one of the major problems with global significance. In the present investigation, we screened 80 in-house quinoline derivatives for their anti-CHIKV activity by computational techniques and found 4-hydroxy-1-methyl-3-(3-morpholinopropanoyl)quinoline-2(1 H )-one (QVIR) to have potential binding affinities with CHIKV nsP2 and E2 glycoproteins. QVIR was evaluated in vitro for its anti-CHIKV potential. QVIR showed strong inhibition of CHIKV infection with an EC <subscript>50</subscript> (50% effective concentration) value of 2.2 ± 0.49 μM without significant cytotoxicity (CC <subscript>50</subscript> > 200 μM) and was chosen for further elucidation of its antiviral mechanism. The infectious viral particle formation was abolished by approximately 72% at a QVIR concentration of 20 μM during infection in the BHK-21 cell line, and the CHIKV RNA synthesis was diminished by 84% for nsP2 as well as 74% for E2, whereas the levels of viral proteins were decreased by 69.9% for nsP2 and 53.9% for E2. Flow cytometry analysis confirmed a huge decline in the expression of viral nsP2 and E2 proteins by 71.84 and 67.7%, respectively. Time of addition experiments indicated that QVIR inhibited viral infection at early and late stages of viral replication cycle, and the optimal inhibition was observed at 16 h post infection. The present study advocates for the first time that QVIR acts as a substantial and potent inhibitor against CHIKV and might be as an auspicious novel drug candidate for the development of therapeutic agents against CHIKV infections.<br />Competing Interests: The authors declare no competing financial interest.<br /> (© 2021 The Authors. Published by American Chemical Society.)
Details
- Language :
- English
- ISSN :
- 2470-1343
- Volume :
- 6
- Issue :
- 14
- Database :
- MEDLINE
- Journal :
- ACS omega
- Publication Type :
- Academic Journal
- Accession number :
- 33869959
- Full Text :
- https://doi.org/10.1021/acsomega.1c00447