Back to Search Start Over

Glycol chitosan-based tacrolimus-loaded nanomicelle therapy ameliorates lupus nephritis.

Authors :
Kim CS
Mathew AP
Vasukutty A
Uthaman S
Joo SY
Bae EH
Ma SK
Park IK
Kim SW
Source :
Journal of nanobiotechnology [J Nanobiotechnology] 2021 Apr 17; Vol. 19 (1), pp. 109. Date of Electronic Publication: 2021 Apr 17.
Publication Year :
2021

Abstract

Background: Recently, we developed hydrophobically modified glycol chitosan (HGC) nanomicelles loaded with tacrolimus (TAC) (HGC-TAC) for the targeted renal delivery of TAC. Herein, we determined whether the administration of the HGC-TAC nanomicelles decreases kidney injury in a model of lupus nephritis. Lupus-prone female MRL/lpr mice were randomly assigned into three groups that received intravenous administration of either vehicle control, an equivalent dose of TAC, or HGC-TAC (0.5 mg/kg TAC) weekly for 8 weeks. Age-matched MRL/MpJ mice without Fas <superscript>lpr</superscript> mutation were also treated with HGC vehicle and used as healthy controls.<br />Results: Weekly intravenous treatment with HGC-TAC significantly reduced genetically attributable lupus activity in lupus nephritis-positive mice. In addition, HGC-TAC treatment mitigated renal dysfunction, proteinuria, and histological injury, including glomerular proliferative lesions and tubulointerstitial infiltration. Furthermore, HGC-TAC treatment reduced renal inflammation and inflammatory gene expression and ameliorated increased apoptosis and glomerular fibrosis. Moreover, HGC-TAC administration regulated renal injury via the TGF-β1/MAPK/NF-κB signaling pathway. These renoprotective effects of HGC-TAC treatment were more potent in lupus mice compared to those of TAC treatment alone.<br />Conclusion: Our study indicates that weekly treatment with the HGC-TAC nanomicelles reduces kidney injury resulting from lupus nephritis by preventing inflammation, fibrosis, and apoptosis. This advantage of a new therapeutic modality using kidney-targeted HGC-TAC nanocarriers may improve drug adherence and provide treatment efficacy in lupus nephritis mice.

Details

Language :
English
ISSN :
1477-3155
Volume :
19
Issue :
1
Database :
MEDLINE
Journal :
Journal of nanobiotechnology
Publication Type :
Academic Journal
Accession number :
33865397
Full Text :
https://doi.org/10.1186/s12951-021-00857-w