Back to Search
Start Over
Optimization of therapeutic antibodies by predicting antigen specificity from antibody sequence via deep learning.
- Source :
-
Nature biomedical engineering [Nat Biomed Eng] 2021 Jun; Vol. 5 (6), pp. 600-612. Date of Electronic Publication: 2021 Apr 15. - Publication Year :
- 2021
-
Abstract
- The optimization of therapeutic antibodies is time-intensive and resource-demanding, largely because of the low-throughput screening of full-length antibodies (approximately 1 × 10 <superscript>3</superscript> variants) expressed in mammalian cells, which typically results in few optimized leads. Here we show that optimized antibody variants can be identified by predicting antigen specificity via deep learning from a massively diverse space of antibody sequences. To produce data for training deep neural networks, we deep-sequenced libraries of the therapeutic antibody trastuzumab (about 1 × 10 <superscript>4</superscript> variants), expressed in a mammalian cell line through site-directed mutagenesis via CRISPR-Cas9-mediated homology-directed repair, and screened the libraries for specificity to human epidermal growth factor receptor 2 (HER2). We then used the trained neural networks to screen a computational library of approximately 1 × 10 <superscript>8</superscript> trastuzumab variants and predict the HER2-specific subset (approximately 1 × 10 <superscript>6</superscript> variants), which can then be filtered for viscosity, clearance, solubility and immunogenicity to generate thousands of highly optimized lead candidates. Recombinant expression and experimental testing of 30 randomly selected variants from the unfiltered library showed that all 30 retained specificity for HER2. Deep learning may facilitate antibody engineering and optimization.
- Subjects :
- Amino Acid Sequence
Animals
Antibody Affinity
Antibody Specificity
Antigens genetics
Antigens immunology
CRISPR-Cas Systems
Humans
Hybridomas chemistry
Hybridomas immunology
Mutagenesis, Site-Directed
Protein Binding
Receptor, ErbB-2 genetics
Receptor, ErbB-2 immunology
Recombinational DNA Repair
Sequence Analysis, Protein
Trastuzumab genetics
Trastuzumab immunology
Antigens chemistry
Deep Learning
Protein Engineering methods
Receptor, ErbB-2 chemistry
Trastuzumab chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 2157-846X
- Volume :
- 5
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Nature biomedical engineering
- Publication Type :
- Academic Journal
- Accession number :
- 33859386
- Full Text :
- https://doi.org/10.1038/s41551-021-00699-9