Back to Search
Start Over
Long non-coding RNA SNHG14 aggravates LPS-induced acute kidney injury through regulating miR-495-3p/HIPK1.
- Source :
-
Acta biochimica et biophysica Sinica [Acta Biochim Biophys Sin (Shanghai)] 2021 May 21; Vol. 53 (6), pp. 719-728. - Publication Year :
- 2021
-
Abstract
- Acute kidney injury (AKI) is a complex syndrome with an abrupt decrease of kidney function, which is associated with high morbidity and mortality. Sepsis is the common cause of AKI. Mounting evidence has demonstrated that long non-coding RNAs (lncRNAs) play critical roles in the development and progression of sepsis-induced AKI. In this study, we aimed to illustrate the function and mechanism of lncRNA SNHG14 in lipopolysaccharide (LPS)-induced AKI. We found that SNHG14 was highly expressed in the plasma of sepsis patients with AKI. SNHG14 inhibited cell proliferation and autophagy and promoted cell apoptosis and inflammatory cytokine production in LPS-stimulated HK-2 cells. Functionally, SNHG14 acted as a competing endogenous RNA (ceRNA) to negatively regulate miR-495-3p expression in HK-2 cells. Furthermore, we identified that HIPK1 is a direct target of miR-495-3p in HK-2 cells. We also revealed that the SNHG14/miR-495-3p/HIPK1 interaction network regulated HK-2 cell proliferation, apoptosis, autophagy, and inflammatory cytokine production upon LPS stimulation. In addition, we demonstrated that the SNHG14/miR-495-3p/HIPK1 interaction network regulated the production of inflammatory cytokines (TNF-α, IL-6, and IL-1β) via modulating NF-κB/p65 signaling in LPS-challenged HK-2 cells. In conclusion, our findings suggested a novel therapeutic axis of SNHG14/miR-495-3p/HIPK1 to treat sepsis-induced AKI.<br /> (© The Author(s) 2021. Published by Oxford University Press on behalf of the Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.)
- Subjects :
- Apoptosis genetics
Autophagy genetics
Case-Control Studies
Cell Line, Transformed
Cell Proliferation genetics
Cytokines biosynthesis
Epithelial Cells drug effects
Gene Knockdown Techniques
Humans
Kidney Tubules cytology
MicroRNAs genetics
Protein Serine-Threonine Kinases genetics
RNA, Long Noncoding genetics
Sepsis complications
Transfection
Acute Kidney Injury blood
Acute Kidney Injury chemically induced
Epithelial Cells metabolism
Lipopolysaccharides adverse effects
MicroRNAs metabolism
Protein Serine-Threonine Kinases metabolism
RNA, Long Noncoding blood
Sepsis blood
Signal Transduction genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1745-7270
- Volume :
- 53
- Issue :
- 6
- Database :
- MEDLINE
- Journal :
- Acta biochimica et biophysica Sinica
- Publication Type :
- Academic Journal
- Accession number :
- 33856026
- Full Text :
- https://doi.org/10.1093/abbs/gmab034