Back to Search
Start Over
Plasmin-mediated cleavage of high-molecular-weight kininogen contributes to acetaminophen-induced acute liver failure.
- Source :
-
Blood [Blood] 2021 Jul 22; Vol. 138 (3), pp. 259-272. - Publication Year :
- 2021
-
Abstract
- Acetaminophen (APAP)-induced liver injury is associated with activation of coagulation and fibrinolysis. In mice, both tissue factor-dependent thrombin generation and plasmin activity have been shown to promote liver injury after APAP overdose. However, the contribution of the contact and intrinsic coagulation pathways has not been investigated in this model. Mice deficient in individual factors of the contact (factor XII [FXII] and prekallikrein) or intrinsic coagulation (FXI) pathway were administered a hepatotoxic dose of 400 mg/kg of APAP. Neither FXII, FXI, nor prekallikrein deficiency mitigated coagulation activation or hepatocellular injury. Interestingly, despite the lack of significant changes to APAP-induced coagulation activation, markers of liver injury and inflammation were significantly reduced in APAP-challenged high-molecular-weight kininogen-deficient (HK-/-) mice. Protective effects of HK deficiency were not reproduced by inhibition of bradykinin-mediated signaling, whereas reconstitution of circulating levels of HK in HK-/- mice restored hepatotoxicity. Fibrinolysis activation was observed in mice after APAP administration. Western blotting, enzyme-linked immunosorbent assay, and mass spectrometry analysis showed that plasmin efficiently cleaves HK into multiple fragments in buffer or plasma. Importantly, plasminogen deficiency attenuated APAP-induced liver injury and prevented HK cleavage in the injured liver. Finally, enhanced plasmin generation and HK cleavage, in the absence of contact pathway activation, were observed in plasma of patients with acute liver failure due to APAP overdose. In summary, extrinsic but not intrinsic pathway activation drives the thromboinflammatory pathology associated with APAP-induced liver injury in mice. Furthermore, plasmin-mediated cleavage of HK contributes to hepatotoxicity in APAP-challenged mice independently of thrombin generation or bradykinin signaling.<br /> (© 2021 by The American Society of Hematology.)
- Subjects :
- Acetaminophen pharmacology
Animals
Chemical and Drug Induced Liver Injury genetics
Chemical and Drug Induced Liver Injury pathology
Factor XII genetics
Factor XII metabolism
Female
Fibrinolysin genetics
Humans
Kininogens genetics
Male
Mice
Mice, Knockout
Prekallikrein genetics
Prekallikrein metabolism
Acetaminophen adverse effects
Chemical and Drug Induced Liver Injury metabolism
Fibrinolysin metabolism
Fibrinolysis drug effects
Kininogens metabolism
Proteolysis drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1528-0020
- Volume :
- 138
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Blood
- Publication Type :
- Academic Journal
- Accession number :
- 33827130
- Full Text :
- https://doi.org/10.1182/blood.2020006198