Back to Search Start Over

Amyloid-Beta Induces Different Expression Pattern of Tissue Transglutaminase and Its Isoforms on Olfactory Ensheathing Cells: Modulatory Effect of Indicaxanthin.

Authors :
Campisi A
Raciti G
Sposito G
Grasso R
Chiacchio MA
Spatuzza M
Attanzio A
Chiacchio U
Tesoriere L
Allegra M
Pellitteri R
Source :
International journal of molecular sciences [Int J Mol Sci] 2021 Mar 25; Vol. 22 (7). Date of Electronic Publication: 2021 Mar 25.
Publication Year :
2021

Abstract

Herein, we assessed the effect of full native peptide of amyloid-beta (Aβ) (1-42) and its fragments (25-35 and 35-25) on tissue transglutaminase (TG2) and its isoforms (TG2-Long and TG2-Short) expression levels on olfactory ensheathing cells (OECs). Vimentin and glial fibrillary acid protein (GFAP) were also studied. The effect of the pre-treatment with indicaxanthin from Opuntia ficus-indica fruit on TG2 expression levels and its isoforms, cell viability, total reactive oxygen species (ROS), superoxide anion (O <subscript>2</subscript> <superscript>-</superscript> ), and apoptotic pathway activation was assessed. The levels of Nestin and cyclin D1 were also evaluated. Our findings highlight that OECs exposure to Aβ(1-42) and its fragments induced an increase in TG2 expression levels and a different expression pattern of its isoforms. Indicaxanthin pre-treatment reduced TG2 overexpression, modulating the expression of TG2 isoforms. It reduced total ROS and O <subscript>2</subscript> <superscript>-</superscript> production, GFAP and Vimentin levels, inhibiting apoptotic pathway activation. It also induced an increase in the Nestin and cyclin D1 expression levels. Our data demonstrated that indicaxanthin pre-treatment stimulated OECs self-renewal through the reparative activity played by TG2. They also suggest that Aβ might modify TG2 conformation in OECs and that indicaxanthin pre-treatment might modulate TG2 conformation, stimulating neural regeneration in Alzheimer's disease.

Details

Language :
English
ISSN :
1422-0067
Volume :
22
Issue :
7
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
33806203
Full Text :
https://doi.org/10.3390/ijms22073388