Back to Search
Start Over
Fructose Removal from the Diet Reverses Inflammation, Mitochondrial Dysfunction, and Oxidative Stress in Hippocampus.
- Source :
-
Antioxidants (Basel, Switzerland) [Antioxidants (Basel)] 2021 Mar 20; Vol. 10 (3). Date of Electronic Publication: 2021 Mar 20. - Publication Year :
- 2021
-
Abstract
- Young age is often characterized by high consumption of processed foods and fruit juices rich in fructose, which, besides inducing a tendency to become overweight, can promote alterations in brain function. The aim of this study was therefore to (a) clarify brain effects resulting from fructose consumption in juvenile age, a critical phase for brain development, and (b) verify whether these alterations can be rescued after removing fructose from the diet. Young rats were fed a fructose-rich or control diet for 3 weeks. Fructose-fed rats were then fed a control diet for a further 3 weeks. We evaluated mitochondrial bioenergetics by high-resolution respirometry in the hippocampus, a brain area that is critically involved in learning and memory. Glucose transporter-5, fructose and uric acid levels, oxidative status, and inflammatory and synaptic markers were investigated by Western blotting and spectrophotometric or enzyme-linked immunosorbent assays. A short-term fructose-rich diet induced mitochondrial dysfunction and oxidative stress, associated with an increased concentration of inflammatory markers and decreased Neurofilament-M and post-synaptic density protein 95. These alterations, except for increases in haptoglobin and nitrotyrosine, were recovered by returning to a control diet. Overall, our results point to the dangerous effects of excessive consumption of fructose in young age but also highlight the effect of partial recovery by switching back to a control diet.
Details
- Language :
- English
- ISSN :
- 2076-3921
- Volume :
- 10
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Antioxidants (Basel, Switzerland)
- Publication Type :
- Academic Journal
- Accession number :
- 33804637
- Full Text :
- https://doi.org/10.3390/antiox10030487