Back to Search Start Over

Origins, fate, and actions of methylated trivalent metabolites of inorganic arsenic: progress and prospects.

Authors :
Stýblo M
Venkatratnam A
Fry RC
Thomas DJ
Source :
Archives of toxicology [Arch Toxicol] 2021 May; Vol. 95 (5), pp. 1547-1572. Date of Electronic Publication: 2021 Mar 26.
Publication Year :
2021

Abstract

The toxic metalloid inorganic arsenic (iAs) is widely distributed in the environment. Chronic exposure to iAs from environmental sources has been linked to a variety of human diseases. Methylation of iAs is the primary pathway for metabolism of iAs. In humans, methylation of iAs is catalyzed by arsenic (+ 3 oxidation state) methyltransferase (AS3MT). Conversion of iAs to mono- and di-methylated species (MAs and DMAs) detoxifies iAs by increasing the rate of whole body clearance of arsenic. Interindividual differences in iAs metabolism play key roles in pathogenesis of and susceptibility to a range of disease outcomes associated with iAs exposure. These adverse health effects are in part associated with the production of methylated trivalent arsenic species, methylarsonous acid (MAs <superscript>III</superscript> ) and dimethylarsinous acid (DMAs <superscript>III</superscript> ), during AS3MT-catalyzed methylation of iAs. The formation of these metabolites activates iAs to unique forms that cause disease initiation and progression. Taken together, the current evidence suggests that methylation of iAs is a pathway for detoxification and for activation of the metalloid. Beyond this general understanding of the consequences of iAs methylation, many questions remain unanswered. Our knowledge of metabolic targets for MAs <superscript>III</superscript> and DMAs <superscript>III</superscript> in human cells and mechanisms for interactions between these arsenicals and targets is incomplete. Development of novel analytical methods for quantitation of MAs <superscript>III</superscript> and DMAs <superscript>III</superscript> in biological samples promises to address some of these gaps. Here, we summarize current knowledge of the enzymatic basis of MAs <superscript>III</superscript> and DMAs <superscript>III</superscript> formation, the toxic actions of these metabolites, and methods available for their detection and quantification in biomatrices. Major knowledge gaps and future research directions are also discussed.

Details

Language :
English
ISSN :
1432-0738
Volume :
95
Issue :
5
Database :
MEDLINE
Journal :
Archives of toxicology
Publication Type :
Academic Journal
Accession number :
33768354
Full Text :
https://doi.org/10.1007/s00204-021-03028-w