Back to Search
Start Over
Redox-responsive prodrug for improving oral bioavailability of paclitaxel through bile acid transporter-mediated pathway.
- Source :
-
International journal of pharmaceutics [Int J Pharm] 2021 May 01; Vol. 600, pp. 120496. Date of Electronic Publication: 2021 Mar 19. - Publication Year :
- 2021
-
Abstract
- Most anticancer drugs are not orally bioavailable due to their undesirable physicochemical properties and inherent physiological barriers. In this study, a polymeric prodrug strategy was presented to enhance the oral bioavailability of BCS class IV drugs using paclitaxel (PTX) as the model drug. PTX was covalently conjugated with cholic acid-functionalized PEG by a redox-sensitive disulfide bond. Cholic acid-functionalized PEGylated PTX (CPP) achieved remarkably improved PTX solubility (>30,000-fold), as well as favorable stability under the physiological environment and controlled drug release in the tumor. Meanwhile, CPP could self-assemble into nanoparticles with an average size of 56.18 ± 2.06 nm and drug loading up to 17.6% (w/w). Then, permeability study on Caco-2 cell monolayers demonstrated that CPP obtained an approximately 4-fold increase by apical sodium-dependent bile acid transporter (ASBT) mediated transport, compared with Taxol®. Pharmacokinetic studies carried out in rats confirmed that the oral bioavailability of CPP was 10-fold higher than that of Taxol®. Finally, significant improvement in the antitumor efficacy of CPP against breast cancer was confirmed on MDA-MB-231 cells. In summary, this prodrug-based cascade strategy offers new ways for chemotherapeutic drugs whose oral delivery is limited by solubility and permeability, also endows drugs with the capacity of tumor-specific release.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-3476
- Volume :
- 600
- Database :
- MEDLINE
- Journal :
- International journal of pharmaceutics
- Publication Type :
- Academic Journal
- Accession number :
- 33746013
- Full Text :
- https://doi.org/10.1016/j.ijpharm.2021.120496