Back to Search Start Over

Segregation of functional networks is associated with cognitive resilience in Alzheimer's disease.

Authors :
Ewers M
Luan Y
Frontzkowski L
Neitzel J
Rubinski A
Dichgans M
Hassenstab J
Gordon BA
Chhatwal JP
Levin J
Schofield P
Benzinger TLS
Morris JC
Goate A
Karch CM
Fagan AM
McDade E
Allegri R
Berman S
Chui H
Cruchaga C
Farlow M
Graff-Radford N
Jucker M
Lee JH
Martins RN
Mori H
Perrin R
Xiong C
Rossor M
Fox NC
O'Connor A
Salloway S
Danek A
Buerger K
Bateman RJ
Habeck C
Stern Y
Franzmeier N
Source :
Brain : a journal of neurology [Brain] 2021 Aug 17; Vol. 144 (7), pp. 2176-2185.
Publication Year :
2021

Abstract

Cognitive resilience is an important modulating factor of cognitive decline in Alzheimer's disease, but the functional brain mechanisms that support cognitive resilience remain elusive. Given previous findings in normal ageing, we tested the hypothesis that higher segregation of the brain's connectome into distinct functional networks represents a functional mechanism underlying cognitive resilience in Alzheimer's disease. Using resting-state functional MRI, we assessed both resting-state functional MRI global system segregation, i.e. the balance of between-network to within-network connectivity, and the alternate index of modularity Q as predictors of cognitive resilience. We performed all analyses in two independent samples for validation: (i) 108 individuals with autosomal dominantly inherited Alzheimer's disease and 71 non-carrier controls; and (ii) 156 amyloid-PET-positive subjects across the spectrum of sporadic Alzheimer's disease and 184 amyloid-negative controls. In the autosomal dominant Alzheimer's disease sample, disease severity was assessed by estimated years from symptom onset. In the sporadic Alzheimer's sample, disease stage was assessed by temporal lobe tau-PET (i.e. composite across Braak stage I and III regions). In both samples, we tested whether the effect of disease severity on cognition was attenuated at higher levels of functional network segregation. For autosomal dominant Alzheimer's disease, we found higher functional MRI-assessed system segregation to be associated with an attenuated effect of estimated years from symptom onset on global cognition (P = 0.007). Similarly, for patients with sporadic Alzheimer's disease, higher functional MRI-assessed system segregation was associated with less decrement in global cognition (P = 0.001) and episodic memory (P = 0.004) per unit increase of temporal lobe tau-PET. Confirmatory analyses using the alternate index of modularity Q revealed consistent results. In conclusion, higher segregation of functional connections into distinct large-scale networks supports cognitive resilience in Alzheimer's disease.<br /> (© The Author(s) (2021). Published by Oxford University Press on behalf of the Guarantors of Brain. All rights reserved. For permissions, please email: journals.permissions@oup.com.)

Details

Language :
English
ISSN :
1460-2156
Volume :
144
Issue :
7
Database :
MEDLINE
Journal :
Brain : a journal of neurology
Publication Type :
Academic Journal
Accession number :
33725114
Full Text :
https://doi.org/10.1093/brain/awab112