Back to Search Start Over

Estimating reef fish size distributions with a mini remotely operated vehicle-integrated stereo camera system.

Authors :
Garner SB
Olsen AM
Caillouet R
Campbell MD
Patterson WF 3rd
Source :
PloS one [PLoS One] 2021 Mar 04; Vol. 16 (3), pp. e0247985. Date of Electronic Publication: 2021 Mar 04 (Print Publication: 2021).
Publication Year :
2021

Abstract

We tested the efficacy of a stereo camera (SC) system adapted for use with a remotely operated vehicle (ROV) to estimate fish length distributions at reef sites in the northern Gulf of Mexico. A pool experiment was conducted to test the effect of distance (1, 2, 3 or 5 m), angle of incidence (AOI; 0° to 40° at 5° increments), and SC baseline distance (BD; BD1 = 406, BD2 = 610, and BD3 = 762 mm camera separation) on the accuracy and precision of fish model length (288, 552, or 890 mm fork length) estimates compared to a red laser scaler (RLS). A field experiment was then conducted at 20 reef sites with SCs positioned at BD1 to compare fish length distribution estimates between the SC and RLS systems under in situ conditions. In the pool experiment, mean percent errors were consistently within the a priori selected threshold of ±5% at AOIs ≤10° at all distances with all four systems. However, SCs produced accurate estimates at AOIs up to 30° at all distances tested; 2-3 m was optimal. During reef site surveys, SCs collected 10.4 times as many length estimates from 4.3 times as many species compared to the RLS. Study results demonstrate that, compared to laser scalers, ROV-based SC systems can substantially increase the number of available fish length estimates by producing accurate length estimates at a wider range of target orientations while also enabling measurements from a greater portion of the cameras' field of view.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1932-6203
Volume :
16
Issue :
3
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
33662031
Full Text :
https://doi.org/10.1371/journal.pone.0247985