Back to Search
Start Over
Effect of UGT1A1, CYP3A and CES Activities on the Pharmacokinetics of Irinotecan and its Metabolites in Patients with UGT1A1 Gene Polymorphisms.
- Source :
-
European journal of drug metabolism and pharmacokinetics [Eur J Drug Metab Pharmacokinet] 2021 Mar; Vol. 46 (2), pp. 317-324. Date of Electronic Publication: 2021 Feb 23. - Publication Year :
- 2021
-
Abstract
- Background and Objectives: Irinotecan (CPT-11) is metabolized to an active metabolite 7-ethyl-10-hydroxycamptothecin (SN-38) by carboxylesterase (CES). SN-38 is then converted to the inactive metabolite SN-38 glucuronide (SN-38G) by glucuronosyltransferase 1A1 (UGT1A1). Genetic polymorphisms in UGT1A1 have been associated with altered SN-38 pharmacokinetics, which increase the risk of toxicity in patients. CPT-11 is also converted to 7-ethyl-10-[4-N-(5-aminopentanoic acid)-1-piperidino]carbonyloxycamptothecin (APC) and 7-ethyl-10-(4-amino-1-piperidino) carbonyloxycamptothecin (NPC) by cytochrome P450 3A (CYP3A), and this route also affects the plasma concentration of SN-38. We evaluated the activities of UGT1A1, CYP3A, and CES and the factors affecting the pharmacokinetics of plasma SN-38 in patients with UGT1A1 gene polymorphisms.<br />Methods: Three male patients aged 56, 65, and 49 years were recruited for the analysis. All patients had pancreatic cancer, received FOLFIRINOX, and had UGT1A1*6/*6 (patients 1 and 3) or *6/*28 (patient 2) genetic polymorphisms. The rate constants for evaluating the enzyme activity were determined from the measured plasma concentration of CPT-11 and its metabolites using a two-compartment model by WinNonlin.<br />Results: The area under the plasma concentration-time curve (AUC) of SN-38 was patient 1 > patient 2 > patient 3. The rate constants obtained from the model analysis indicated the respective enzyme activities of UGT1A1 (k57), CYP3A (k13 + k19), and CES (k15). The order of values for UGT1A1 activity was patient 2 > patient 3 > patient 1. Since UGT1A1 activity was low in patient 1 with a high AUC of SN-38, it can be said that the increase in plasma concentration was due to a decrease in UGT1A1 activity. Conversely, the order of values for CYP3A and CES activities was patient 3 > patient 1 > patient 2 and patient 2 > patient 1 > patient 3, respectively. Patient 3 had the lowest AUC of SN-38, caused by a lower level of CES activity and increased CYP3A activity.<br />Conclusion: In this study, we indicated that the plasma AUC of SN-38 and AUC ratio of SN-38G/SN-38 may depend on changes in the activities of CYP3A, CES, and UGT1A1. Using pharmacokinetic analysis, it is possible to directly evaluate enzyme activity and consider what kind of enzyme variation causes the increase in the AUC of SN-38.
- Subjects :
- Aged
Antineoplastic Combined Chemotherapy Protocols administration & dosage
Area Under Curve
Camptothecin analogs & derivatives
Camptothecin pharmacokinetics
Carboxylesterase metabolism
Cytochrome P-450 CYP3A metabolism
Fluorouracil administration & dosage
Fluorouracil pharmacokinetics
Glucuronides pharmacokinetics
Glucuronosyltransferase metabolism
Humans
Irinotecan administration & dosage
Leucovorin administration & dosage
Leucovorin pharmacokinetics
Male
Middle Aged
Models, Biological
Oxaliplatin administration & dosage
Oxaliplatin pharmacokinetics
Polymorphism, Genetic
Antineoplastic Combined Chemotherapy Protocols pharmacokinetics
Glucuronosyltransferase genetics
Irinotecan pharmacokinetics
Pancreatic Neoplasms drug therapy
Subjects
Details
- Language :
- English
- ISSN :
- 2107-0180
- Volume :
- 46
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- European journal of drug metabolism and pharmacokinetics
- Publication Type :
- Academic Journal
- Accession number :
- 33619631
- Full Text :
- https://doi.org/10.1007/s13318-021-00675-3