Back to Search
Start Over
Zinc biosorption by Dunaliella sp. AL-1: Mechanism and effects on cell metabolism.
- Source :
-
The Science of the total environment [Sci Total Environ] 2021 Jun 15; Vol. 773, pp. 145024. Date of Electronic Publication: 2021 Feb 01. - Publication Year :
- 2021
-
Abstract
- Phycoremediation is being considered as an eco-friendly and safe technology for toxics eradication from contaminated aquatic systems. The zinc biosorption capacity of Dunaliella sp. AL-1 was demonstrated. Zinc impacted cell growth and photosynthetic pigments accumulation showing exposure time and concentration-dependent effects. The investigation of the antioxidant protective response to zinc exposition proved a stimulation of guaiacol peroxidase (GPX) activity and an increased rate of total phenolics, flavonoids, condensed tannins and glutathione (GSH). The Box-Behnken design was used to optimize zinc removal conditions by Dunaliella sp. AL-1 strain. The maximum experimental zinc uptake was obtained when zinc concentration, algae dose, initial pH, and contact time were set at 25 mg/L, 0.5 g/L, 7.59 and 13 h 43 min, respectively. Under completely optimized conditions, the fraction of zinc removed intracellularly was much lower than the adsorbed on the cell surface. FTIR analysis Dunaliella sp. AL-1 biomass demonstrated that several functional groups as OH, CH <subscript>2</subscript> , CO, PO, COO and CO may participate in the biosorption process. A comparative proteomic analysis through nano-HPLC coupled to LC-MS/MS, was performed from pre- and post-zinc treatments cells. Among 199 identified proteins, 60 were differentially expressed of which 41 proteins were down-regulated against 19 up-regulated ones. Target proteins have been demonstrated to be implicated in different metabolic processes mainly photosynthesis and antioxidant defenses.<br />Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (Copyright © 2021 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 773
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 33582349
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2021.145024