Back to Search Start Over

One size does not fit all: navigating the multi-dimensional space to optimize T-cell engaging protein therapeutics.

Authors :
Chen W
Yang F
Wang C
Narula J
Pascua E
Ni I
Ding S
Deng X
Chu ML
Pham A
Jiang X
Lindquist KC
Doonan PJ
Van Blarcom T
Yeung YA
Chaparro-Riggers J
Source :
MAbs [MAbs] 2021 Jan-Dec; Vol. 13 (1), pp. 1871171.
Publication Year :
2021

Abstract

T-cell engaging biologics is a class of novel and promising immune-oncology compounds that leverage the immune system to eradicate cancer. Here, we compared and contrasted a bispecific diabody-Fc format, which displays a relatively short antigen-binding arm distance, with our bispecific IgG platform. By generating diverse panels of antigen-expressing cells where B cell maturation antigen is either tethered to the cell membrane or located to the juxtamembrane region and masked by elongated structural spacer units, we presented a systematic approach to investigate the role of antigen epitope location and molecular formats in immunological synapse formation and cytotoxicity. We demonstrated that diabody-Fc is more potent for antigen epitopes located in the membrane distal region, while bispecific IgG is more efficient for membrane-proximal epitopes. Additionally, we explored other parameters, including receptor density, antigen-binding affinity, and kinetics. Our results show that molecular format and antigen epitope location, which jointly determine the intermembrane distance between target cells and T cells, allow decoupling of cytotoxicity and cytokine release, while antigen-binding affinities appear to be positively correlated with both readouts. Our work offers new insight that could potentially lead to a wider therapeutic window for T-cell engaging biologics in general.

Details

Language :
English
ISSN :
1942-0870
Volume :
13
Issue :
1
Database :
MEDLINE
Journal :
MAbs
Publication Type :
Academic Journal
Accession number :
33557687
Full Text :
https://doi.org/10.1080/19420862.2020.1871171