Back to Search Start Over

Disinfectant and antimicrobial susceptibility studies of the foodborne pathogen Campylobacter jejuni isolated from the litter of broiler chicken houses.

Authors :
Beier RC
Byrd JA
Andrews K
Caldwell D
Crippen TL
Anderson RC
Nisbet DJ
Source :
Poultry science [Poult Sci] 2021 Feb; Vol. 100 (2), pp. 1024-1033. Date of Electronic Publication: 2020 Nov 04.
Publication Year :
2021

Abstract

Foodborne illness is an ongoing problem worldwide and is caused by bacteria that invade the food chain from the farm, slaughter house, restaurant or grocery, or in the home and can be controlled by strategies using biocides (antiseptics and disinfectants). Susceptibility profiles were determined for 96 Campylobacter jejuni strains obtained in 2011-2012 from broiler chicken house environments to antimicrobials and disinfectants as per the methods of the Clinical and Laboratory Standards Institute and TREK Diagnostics using CAMPY AST Campylobacter plates. Low prevalence of antimicrobial resistance was observed in C. jejuni strains to tetracycline (TET; 21.9%), ciprofloxacin (CIP; 13.5%), and nalidixic acid (NAL; 12.5%). The resistance profiles had a maximum of 3 antimicrobials, CIP-NAL-TET, with TET being the main profile observed. No cross-resistance was observed between antimicrobials and disinfectants. The C. jejuni strains (99%) were resistant to triclosan, 32% were resistant to chlorhexidine, and they all were susceptible to benzalkonium chloride. The strains had low-level minimum inhibitory concentrations (MICs) to the disinfectants P-128, Food Service Sanitizer, F-25 Sanitizer, Final Step 512 Sanitizer, OdoBan, dioctyldimethylammmonium chloride, didecyldimethylammonium chloride (C10AC), benzyldimethyldodecylammonium chloride (C12BAC), and benzyldimethyltetradecylammonium chloride (C14BAC). Intermediate MICs against DC&R, cetylpyridinium bromide hydrate, hexadecylpyridinium chloride, ethylhexadecyldimethylammonium bromide, and hexadecyltrimethylammonium bromide with elevated intermediate MICs against Tek-Trol, benzyldimethylhexadecylammonium chloride, tris(hydroxylmethyl)nitromethane (THN), and formaldehyde. The highest MIC were obtained for povidone-iodine. The components THN and the benzylammonium chlorides C12BAC and C14BAC were responsible for the inhibition by DC&R. The components C10AC and C12BAC may act synergistically causing inhibition of C. jejuni by the disinfectant P-128. The formaldehyde component in DC&R was not effective against C. jejuni compared with the ammonium chloride components. Its use in disinfectants may result in additional unnecessary chemicals in the environment. Didecyldimethylammonium chloride is the most effective ammonium chloride component against C. jejuni.<br /> (Copyright © 2020. Published by Elsevier Inc.)

Details

Language :
English
ISSN :
1525-3171
Volume :
100
Issue :
2
Database :
MEDLINE
Journal :
Poultry science
Publication Type :
Academic Journal
Accession number :
33518061
Full Text :
https://doi.org/10.1016/j.psj.2020.10.045