Back to Search Start Over

Effects of Nanoclay on Mechanical and Dynamic Mechanical Properties of Bamboo/Kenaf Reinforced Epoxy Hybrid Composites.

Authors :
Chee SS
Jawaid M
Alothman OY
Fouad H
Source :
Polymers [Polymers (Basel)] 2021 Jan 27; Vol. 13 (3). Date of Electronic Publication: 2021 Jan 27.
Publication Year :
2021

Abstract

Current work aims to study the mechanical and dynamical mechanical properties of non-woven bamboo (B)/woven kenaf (K)/epoxy (E) hybrid composites filled with nanoclay. The nanoclay-filled BK/E hybrid composites were prepared by dispersing 1 wt.% nanoclay (organically-modified montmorillonite (MMT; OMMT), montmorillonite (MMT), and halloysite nanotube (HNT)) with high shear speed homogenizer followed by hand lay-up fabrication technique. The effect of adding nanoclay on the tensile, flexural, and impact properties of the hybrid nanocomposites were studied. Fractography of tensile-fractured sample of hybrid composites was studied by field emission scanning electron microscope. The dynamic mechanical analyzer was used to study the viscoelastic properties of the hybrid nanocomposites. BK/E-OMMT exhibit enhanced mechanical properties compared to the other hybrid nanocomposites, with tensile, flexural, and impact strength values of 55.82 MPa, 105 MPa, and 65.68 J/m, respectively. Statistical analysis and grouping information were performed by one-way ANOVA (analysis of variance) and Tukey method, and it corroborates that the mechanical properties of the nanoclay-filled hybrid nanocomposites are statistically significant. The storage modulus of the hybrid nanocomposites was improved by 98.4%, 41.5%, and 21.7% with the addition of OMMT, MMT, and HNT, respectively. Morphology of the tensile fracture BK/E-OMMT composites shows that lesser voids, microcracks and fibers pull out due to strong fiber-matrix adhesion compared to other hybrid composites. Hence, the OMMT-filled BK/E hybrid nanocomposites can be utilized for load-bearing structure applications, such as floor panels and seatbacks, whereby lightweight and high strength are the main requirements.

Details

Language :
English
ISSN :
2073-4360
Volume :
13
Issue :
3
Database :
MEDLINE
Journal :
Polymers
Publication Type :
Academic Journal
Accession number :
33513718
Full Text :
https://doi.org/10.3390/polym13030395