Back to Search Start Over

CentTracker: a trainable, machine-learning-based tool for large-scale analyses of Caenorhabditis elegans germline stem cell mitosis.

Authors :
Zellag RM
Zhao Y
Poupart V
Singh R
Labbé JC
Gerhold AR
Source :
Molecular biology of the cell [Mol Biol Cell] 2021 Apr 19; Vol. 32 (9), pp. 915-930. Date of Electronic Publication: 2021 Jan 27.
Publication Year :
2021

Abstract

Investigating the complex interactions between stem cells and their native environment requires an efficient means to image them in situ. Caenorhabditis elegans germline stem cells (GSCs) are distinctly accessible for intravital imaging; however, long-term image acquisition and analysis of dividing GSCs can be technically challenging. Here we present a systematic investigation into the technical factors impacting GSC physiology during live imaging and provide an optimized method for monitoring GSC mitosis under minimally disruptive conditions. We describe CentTracker, an automated and generalizable image analysis tool that uses machine learning to pair mitotic centrosomes and that can extract a variety of mitotic parameters rapidly from large-scale data sets. We employ CentTracker to assess a range of mitotic features in a large GSC data set. We observe spatial clustering of mitoses within the germline tissue but no evidence that subpopulations with distinct mitotic profiles exist within the stem cell pool. We further find biases in GSC spindle orientation relative to the germline's distal-proximal axis and thus the niche. The technical and analytical tools provided herein pave the way for large-scale screening studies of multiple mitotic processes in GSCs dividing in situ, in an intact tissue, in a living animal, under seemingly physiological conditions.

Details

Language :
English
ISSN :
1939-4586
Volume :
32
Issue :
9
Database :
MEDLINE
Journal :
Molecular biology of the cell
Publication Type :
Academic Journal
Accession number :
33502892
Full Text :
https://doi.org/10.1091/mbc.E20-11-0716