Back to Search Start Over

Development, validation, and pilot MRI safety study of a high-resolution, open source, whole body pediatric numerical simulation model.

Authors :
Jeong H
Ntolkeras G
Alhilani M
Atefi SR
Zöllei L
Fujimoto K
Pourvaziri A
Lev MH
Grant PE
Bonmassar G
Source :
PloS one [PLoS One] 2021 Jan 13; Vol. 16 (1), pp. e0241682. Date of Electronic Publication: 2021 Jan 13 (Print Publication: 2021).
Publication Year :
2021

Abstract

Numerical body models of children are used for designing medical devices, including but not limited to optical imaging, ultrasound, CT, EEG/MEG, and MRI. These models are used in many clinical and neuroscience research applications, such as radiation safety dosimetric studies and source localization. Although several such adult models have been reported, there are few reports of full-body pediatric models, and those described have several limitations. Some, for example, are either morphed from older children or do not have detailed segmentations. Here, we introduce a 29-month-old male whole-body native numerical model, "MARTIN", that includes 28 head and 86 body tissue compartments, segmented directly from the high spatial resolution MRI and CT images. An advanced auto-segmentation tool was used for the deep-brain structures, whereas 3D Slicer was used to segment the non-brain structures and to refine the segmentation for all of the tissue compartments. Our MARTIN model was developed and validated using three separate approaches, through an iterative process, as follows. First, the calculated volumes, weights, and dimensions of selected structures were adjusted and confirmed to be within 6% of the literature values for the 2-3-year-old age-range. Second, all structural segmentations were adjusted and confirmed by two experienced, sub-specialty certified neuro-radiologists, also through an interactive process. Third, an additional validation was performed with a Bloch simulator to create synthetic MR image from our MARTIN model and compare the image contrast of the resulting synthetic image with that of the original MRI data; this resulted in a "structural resemblance" index of 0.97. Finally, we used our model to perform pilot MRI safety simulations of an Active Implantable Medical Device (AIMD) using a commercially available software platform (Sim4Life), incorporating the latest International Standards Organization guidelines. This model will be made available on the Athinoula A. Martinos Center for Biomedical Imaging website.<br />Competing Interests: N/A

Details

Language :
English
ISSN :
1932-6203
Volume :
16
Issue :
1
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
33439896
Full Text :
https://doi.org/10.1371/journal.pone.0241682