Back to Search
Start Over
Interplay between Chemical Transformations and Atomic Structure in Nanocrystals and Nanoclusters.
- Source :
-
Accounts of chemical research [Acc Chem Res] 2021 Feb 02; Vol. 54 (3), pp. 509-519. Date of Electronic Publication: 2021 Jan 12. - Publication Year :
- 2021
-
Abstract
- ConspectusChemically induced transformations are postsynthetic processing reactions applied to first generation (as-synthesized) nanomaterials to modify property-defining factors such as atomic structure, chemical composition, surface chemistry, and/or morphology. Compared with conditions for direct synthesis of colloidal nanocrystals, postsynthetic chemical transformations can be conducted in relatively mild conditions with a more controllable process, which makes them suitable for the precise manipulation of nanomaterials and for trapping metastable phases that are typically inaccessible from the conventional synthetic routes. Each of the chemically induced transformations methods can result in substantial restructuring of the atomic structure, but their transformation pathways can be very different. And the converse is also true: the atomic structure of the parent material plays a large role in the pathway toward and the resulting chemically transformed product. Additionally, the characteristic length of the parent material greatly affects the structure, which affects the outcome of the reaction.In this Account, we show how the atomic structure and nanoscale size directs the product formation into materials that are inaccessible from analogous chemically transformations in bulk materials. Through examples from the three chemical transformation processes (cation/anion exchange, redox reactions, and ligand exchange and ligand etching), the effect of the atomic structure on chemical transformations is made apparent, and vice versa. For cation exchange, an anisotropic atomic lattice results in a unidirectional exchange boundary. And because the interface can extend through the full crystal, a substantial strain field can form, influencing the phase of the material. In the redox reaction that leads to the nanoscale Kirkendall effect, the atomic structure is the key to inverting the diffusion rates in a diffusion couple to form the hollow cores. And for ligand etching, if one of the materials in a heterostructure has a defected and\or defect-tolerant atomic structure, it can be preferentially etched and its atomic structure can undergo phase transformations while the other composition remains intact. For length scales, we show how the chemically induced transformations greatly differ between bulk, nanocrystal, and nanocluster characteristic sizes. For instance, the structural transformation on relatively large nanocrystals (2-100 nm) can be a continuous process when the activation volume is smaller than the nanocrystal, while for smaller nanoclusters (<2 nm) the transformation kinetics could be swift resulting in only discrete thermodynamic states. Comparing the two nanosystems (nanocrystals to small nanoclusters), we address how their atomic structural differences can direct the divergent transformation phenomena and the corresponding mechanisms. Understanding the nanoscale mechanisms of chemically induced transformations and how they differ from bulk processes is key to unlocking new science and for implementing this processing for functional materials.
Details
- Language :
- English
- ISSN :
- 1520-4898
- Volume :
- 54
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Accounts of chemical research
- Publication Type :
- Academic Journal
- Accession number :
- 33434011
- Full Text :
- https://doi.org/10.1021/acs.accounts.0c00704