Back to Search
Start Over
The application of nanoparticles in cancer immunotherapy: Targeting tumor microenvironment.
- Source :
-
Bioactive materials [Bioact Mater] 2020 Dec 26; Vol. 6 (7), pp. 1973-1987. Date of Electronic Publication: 2020 Dec 26 (Print Publication: 2021). - Publication Year :
- 2020
-
Abstract
- The tumor development and metastasis are closely related to the structure and function of the tumor microenvironment (TME). Recently, TME modulation strategies have attracted much attention in cancer immunotherapy. Despite the preliminary success of immunotherapeutic agents, their therapeutic effects have been restricted by the limited retention time of drugs in TME. Compared with traditional delivery systems, nanoparticles with unique physical properties and elaborate design can efficiently penetrate TME and specifically deliver to the major components in TME. In this review, we briefly introduce the substitutes of TME including dendritic cells, macrophages, fibroblasts, tumor vasculature, tumor-draining lymph nodes and hypoxic state, then review various nanoparticles targeting these components and their applications in tumor therapy. In addition, nanoparticles could be combined with other therapies, including chemotherapy, radiotherapy, and photodynamic therapy, however, the nanoplatform delivery system may not be effective in all types of tumors due to the heterogeneity of different tumors and individuals. The changes of TME at various stages during tumor development are required to be further elucidated so that more individualized nanoplatforms could be designed.<br />Competing Interests: The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.<br /> (© 2020 [The Author/The Authors].)
Details
- Language :
- English
- ISSN :
- 2452-199X
- Volume :
- 6
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Bioactive materials
- Publication Type :
- Academic Journal
- Accession number :
- 33426371
- Full Text :
- https://doi.org/10.1016/j.bioactmat.2020.12.010