Back to Search Start Over

Dynamic changes in DNA methylation occur in TE regions and affect cell proliferation during leaf-to-callus transition in Arabidopsis.

Authors :
Shim S
Lee HG
Park OS
Shin H
Lee K
Lee H
Huh JH
Seo PJ
Source :
Epigenetics [Epigenetics] 2022 Jan; Vol. 17 (1), pp. 41-58. Date of Electronic Publication: 2021 Jan 15.
Publication Year :
2022

Abstract

Plant somatic cells can be reprogrammed into pluripotent cell mass, called callus, through a two-step in vitro tissue culture method. Incubation on callus-inducing medium triggers active cell proliferation to form a pluripotent callus. Notably, DNA methylation is implicated during callus formation, but a detailed molecular process regulated by DNA methylation remains to be fully elucidated. Here, we compared genome-wide DNA methylation profiles between leaf and callus tissues in Arabidopsis using whole-genome bisulphite-sequencing. Global distribution of DNA methylation showed that CHG methylation was increased, whereas CHH methylation was reduced especially around transposable element (TE) regions during the leaf-to-callus transition. We further analysed differentially expressed genes around differentially methylated TEs (DMTEs) during the leaf-to-callus transition and found that genes involved in cell cycle regulation were enriched and also constituted a coexpression gene network along with pluripotency regulators. In addition, a conserved DNA sequence analysis for upstream cis -elements led us to find a putative transcription factor associated with cell fate transition. CIRCADIAN CLOCK-ASSOCIATED 1 (CCA1) was newly identified as a regulator of plant regeneration, and consistently, the cca1lhy mutant displayed altered phenotypes in callus proliferation. Overall, these results suggest that DNA methylation coordinates cell cycle regulation during callus formation, and CCA1 may act as a key upstream coordinator at least in part in the processes.

Details

Language :
English
ISSN :
1559-2308
Volume :
17
Issue :
1
Database :
MEDLINE
Journal :
Epigenetics
Publication Type :
Academic Journal
Accession number :
33406971
Full Text :
https://doi.org/10.1080/15592294.2021.1872927