Back to Search Start Over

Modeling the dynamic behaviors of the COPI vesicle formation regulators, the small GTPase Arf1 and its activating Sec7 guanine nucleotide exchange factor GBF1 on Golgi membranes.

Authors :
Sager G
Szul T
Lee E
Kawai R
Presley JF
Sztul E
Source :
Molecular biology of the cell [Mol Biol Cell] 2021 Mar 01; Vol. 32 (5), pp. 446-459. Date of Electronic Publication: 2021 Jan 06.
Publication Year :
2021

Abstract

The components and subprocesses underlying the formation of COPI-coated vesicles at the Golgi are well understood. The coating cascade is initiated after the small GTPase Arf1 is activated by the Sec7 domain-containing guanine nucleotide exchange factor GBF1 (Golgi brefeldin A resistant guanine nucleotide exchange factor 1). This causes a conformational shift within Arf1 that facilitates stable association of Arf1 with the membrane, a process required for subsequent recruitment of the COPI coat. Although we have atomic-level knowledge of Arf1 activation by Sec7 domain-containing GEFs, our understanding of the biophysical processes regulating Arf1 and GBF1 dynamics is limited. We used fluorescence recovery after photobleaching data and kinetic Monte Carlo simulation to assess the behavior of Arf1 and GBF1 during COPI vesicle formation in live cells. Our analyses suggest that Arf1 and GBF1 associate with Golgi membranes independently, with an excess of GBF1 relative to Arf1. Furthermore, the GBF1-mediated Arf1 activation is much faster than GBF1 cycling on/off the membrane, suggesting that GBF1 is regulated by processes other than its interactions Arf1. Interestingly, modeling the behavior of the catalytically inactive GBF1/E794K mutant stabilized on the membrane is inconsistent with the formation of a stable complex between it and an endogenous Arf1 and suggests that GBF1/E794K is stabilized on the membrane independently of complex formation.

Details

Language :
English
ISSN :
1939-4586
Volume :
32
Issue :
5
Database :
MEDLINE
Journal :
Molecular biology of the cell
Publication Type :
Academic Journal
Accession number :
33405949
Full Text :
https://doi.org/10.1091/mbc.E20-09-0587