Back to Search
Start Over
Amphiphilic Thiol Polymer Nanogel Removes Environmentally Relevant Mercury Species from Both Produced Water and Hydrocarbons.
- Source :
-
Environmental science & technology [Environ Sci Technol] 2021 Jan 19; Vol. 55 (2), pp. 1231-1241. Date of Electronic Publication: 2021 Jan 06. - Publication Year :
- 2021
-
Abstract
- Technologies for removal of mercury from produced water and hydrocarbon phases are desired by oil and gas production facilities, oil refineries, and petrochemical plants. Herein, we synthesize and demonstrate the efficacy of an amphiphilic, thiol-abundant (11.8 wt % S, as thiol) polymer nanogel that can remove environmentally relevant mercury species from both produced water and the liquid hydrocarbon. The nanogel disperses in both aqueous and hydrocarbon phases. It has a high sorption affinity for dissolved Hg(II) complexes and Hg-dissolved organic matter complexes found in produced water and elemental (Hg <superscript>0</superscript> ) and soluble Hg-alkyl thiol species found in hydrocarbons. X-ray absorption spectroscopy analysis indicates that the sorbed mercury is transformed to a surface-bound Hg(SR) <subscript>2</subscript> species in both water and hydrocarbon regardless of its initial speciation. The nanogel had high affinity to native mercury species present in real produced water (>99.5% removal) and in natural gas condensate (>85% removal) samples, removing majority of the mercury species using only a 50 mg L <superscript>-1</superscript> applied dose. This thiolated amphiphilic polymeric nanogel has significant potential to remove environmentally relevant mercury species from both water and hydrocarbon at low applied doses, outperforming reported sorbents like sulfur-impregnated activated carbons because of the mass of accessible thiol groups in the nanogel.
- Subjects :
- Hydrocarbons
Nanogels
Polymers
Sulfhydryl Compounds
Water
Mercury
Subjects
Details
- Language :
- English
- ISSN :
- 1520-5851
- Volume :
- 55
- Issue :
- 2
- Database :
- MEDLINE
- Journal :
- Environmental science & technology
- Publication Type :
- Academic Journal
- Accession number :
- 33404237
- Full Text :
- https://doi.org/10.1021/acs.est.0c05470