Back to Search Start Over

Interface-induced sign reversal of the anomalous Hall effect in magnetic topological insulator heterostructures.

Authors :
Wang F
Wang X
Zhao YF
Xiao D
Zhou LJ
Liu W
Zhang Z
Zhao W
Chan MHW
Samarth N
Liu C
Zhang H
Chang CZ
Source :
Nature communications [Nat Commun] 2021 Jan 04; Vol. 12 (1), pp. 79. Date of Electronic Publication: 2021 Jan 04.
Publication Year :
2021

Abstract

The Berry phase picture provides important insights into the electronic properties of condensed matter systems. The intrinsic anomalous Hall (AH) effect can be understood as the consequence of non-zero Berry curvature in momentum space. Here, we fabricate TI/magnetic TI heterostructures and find that the sign of the AH effect in the magnetic TI layer can be changed from being positive to negative with increasing the thickness of the top TI layer. Our first-principles calculations show that the built-in electric fields at the TI/magnetic TI interface influence the band structure of the magnetic TI layer, and thus lead to a reconstruction of the Berry curvature in the heterostructure samples. Based on the interface-induced AH effect with a negative sign in TI/V-doped TI bilayer structures, we create an artificial "topological Hall effect"-like feature in the Hall trace of the V-doped TI/TI/Cr-doped TI sandwich heterostructures. Our study provides a new route to create the Berry curvature change in magnetic topological materials that may lead to potential technological applications.

Details

Language :
English
ISSN :
2041-1723
Volume :
12
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
33397964
Full Text :
https://doi.org/10.1038/s41467-020-20349-z