Back to Search Start Over

A RAC-GEF network critical for early intestinal tumourigenesis.

Authors :
Pickering KA
Gilroy K
Cassidy JW
Fey SK
Najumudeen AK
Zeiger LB
Vincent DF
Gay DM
Johansson J
Fordham RP
Miller B
Clark W
Hedley A
Unal EB
Kiel C
McGhee E
Machesky LM
Nixon C
Johnsson AE
Bain M
Strathdee D
van Hoof SR
Medema JP
Anderson KI
Brachmann SM
Stucke VM
Malliri A
Drysdale M
Turner M
Serrano L
Myant K
Campbell AD
Sansom OJ
Source :
Nature communications [Nat Commun] 2021 Jan 04; Vol. 12 (1), pp. 56. Date of Electronic Publication: 2021 Jan 04.
Publication Year :
2021

Abstract

RAC1 activity is critical for intestinal homeostasis, and is required for hyperproliferation driven by loss of the tumour suppressor gene Apc in the murine intestine. To avoid the impact of direct targeting upon homeostasis, we reasoned that indirect targeting of RAC1 via RAC-GEFs might be effective. Transcriptional profiling of Apc deficient intestinal tissue identified Vav3 and Tiam1 as key targets. Deletion of these indicated that while TIAM1 deficiency could suppress Apc-driven hyperproliferation, it had no impact upon tumourigenesis, while VAV3 deficiency had no effect. Intriguingly, deletion of either gene resulted in upregulation of Vav2, with subsequent targeting of all three (Vav2 <superscript>-/-</superscript> Vav3 <superscript>-/-</superscript> Tiam1 <superscript>-/-</superscript> ), profoundly suppressing hyperproliferation, tumourigenesis and RAC1 activity, without impacting normal homeostasis. Critically, the observed RAC-GEF dependency was negated by oncogenic KRAS mutation. Together, these data demonstrate that while targeting RAC-GEF molecules may have therapeutic impact at early stages, this benefit may be lost in late stage disease.

Details

Language :
English
ISSN :
2041-1723
Volume :
12
Issue :
1
Database :
MEDLINE
Journal :
Nature communications
Publication Type :
Academic Journal
Accession number :
33397922
Full Text :
https://doi.org/10.1038/s41467-020-20255-4