Back to Search Start Over

Ca 2+ -CaM Dependent Inactivation of RyR2 Underlies Ca 2+ Alternans in Intact Heart.

Authors :
Wei J
Yao J
Belke D
Guo W
Zhong X
Sun B
Wang R
Paul Estillore J
Vallmitjana A
Benitez R
Hove-Madsen L
Alvarez-Lacalle E
Echebarria B
Chen SRW
Source :
Circulation research [Circ Res] 2021 Feb 19; Vol. 128 (4), pp. e63-e83. Date of Electronic Publication: 2020 Dec 30.
Publication Year :
2021

Abstract

Rationale: Ca <superscript>2+</superscript> alternans plays an essential role in cardiac alternans that can lead to ventricular fibrillation, but the mechanism underlying Ca <superscript>2+</superscript> alternans remains undefined. Increasing evidence suggests that Ca <superscript>2+</superscript> alternans results from alternations in the inactivation of cardiac RyR2 (ryanodine receptor 2). However, what inactivates RyR2 and how RyR2 inactivation leads to Ca <superscript>2+</superscript> alternans are unknown.<br />Objective: To determine the role of CaM (calmodulin) on Ca <superscript>2+</superscript> alternans in intact working mouse hearts.<br />Methods and Results: We used an in vivo local gene delivery approach to alter CaM function by directly injecting adenoviruses expressing CaM-wild type, a loss-of-function CaM mutation, CaM (1-4), and a gain-of-function mutation, CaM-M37Q, into the anterior wall of the left ventricle of RyR2 wild type or mutant mouse hearts. We monitored Ca <superscript>2+</superscript> transients in ventricular myocytes near the adenovirus-injection sites in Langendorff-perfused intact working hearts using confocal Ca <superscript>2+</superscript> imaging. We found that CaM-wild type and CaM-M37Q promoted Ca <superscript>2+</superscript> alternans and prolonged Ca <superscript>2+</superscript> transient recovery in intact RyR2 wild type and mutant hearts, whereas CaM (1-4) exerted opposite effects. Altered CaM function also affected the recovery from inactivation of the L-type Ca <superscript>2+</superscript> current but had no significant impact on sarcoplasmic reticulum Ca <superscript>2+</superscript> content. Furthermore, we developed a novel numerical myocyte model of Ca <superscript>2+</superscript> alternans that incorporates Ca <superscript>2+</superscript> -CaM-dependent regulation of RyR2 and the L-type Ca <superscript>2+</superscript> channel. Remarkably, the new model recapitulates the impact on Ca <superscript>2+</superscript> alternans of altered CaM and RyR2 functions under 9 different experimental conditions. Our simulations reveal that diastolic cytosolic Ca <superscript>2+</superscript> elevation as a result of rapid pacing triggers Ca <superscript>2+</superscript> -CaM dependent inactivation of RyR2. The resultant RyR2 inactivation diminishes sarcoplasmic reticulum Ca <superscript>2+</superscript> release, which, in turn, reduces diastolic cytosolic Ca <superscript>2+</superscript> , leading to alternations in diastolic cytosolic Ca <superscript>2+</superscript> , RyR2 inactivation, and sarcoplasmic reticulum Ca <superscript>2+</superscript> release (ie, Ca <superscript>2+</superscript> alternans).<br />Conclusions: Our results demonstrate that inactivation of RyR2 by Ca <superscript>2+</superscript> -CaM is a major determinant of Ca <superscript>2+</superscript> alternans, making Ca <superscript>2+</superscript> -CaM dependent regulation of RyR2 an important therapeutic target for cardiac alternans.

Details

Language :
English
ISSN :
1524-4571
Volume :
128
Issue :
4
Database :
MEDLINE
Journal :
Circulation research
Publication Type :
Academic Journal
Accession number :
33375811
Full Text :
https://doi.org/10.1161/CIRCRESAHA.120.318429