Back to Search
Start Over
New Tools to Probe the Protein Surface: Ultrasmall Gold Nanoparticles Carry Amino Acid Binders.
- Source :
-
The journal of physical chemistry. B [J Phys Chem B] 2021 Jan 14; Vol. 125 (1), pp. 115-127. Date of Electronic Publication: 2020 Dec 23. - Publication Year :
- 2021
-
Abstract
- A strategy toward epitope-selective functionalized nanoparticles is introduced in the following: ultrasmall gold nanoparticles (diameter of the metallic core about 2 nm) were functionalized with molecular tweezers that selectively attach lysine and arginine residues on protein surfaces. Between 11 and 30 tweezer molecules were covalently attached to the surface of each nanoparticle by copper-catalyzed azide alkyne cycloaddition (CuAAC), giving multiavid agents to target proteins. The nanoparticles were characterized by high-resolution transmission electron microscopy, differential centrifugal sedimentation, and <superscript>1</superscript> H NMR spectroscopy (diffusion-ordered spectroscopy, DOSY, and surface composition). The interaction of these nanoparticles with the model proteins hPin1 (WW domain; hPin1-WW) and Survivin was probed by NMR titration and by isothermal titration calorimetry (ITC). The binding to the WW domain of hPin1 occurred with a K <subscript>D</subscript> of 41 ± 2 μM, as shown by ITC. The nanoparticle-conjugated tweezers targeted cationic amino acids on the surface of hPin1-WW in the following order: N-terminus (G) ≈ R17 > R14 ≈ R21 > K13 > R36 > K6, as shown by NMR spectroscopy. Nanoparticle recognition of the larger protein Survivin was even more efficient and occurred with a K <subscript>D</subscript> of 8 ± 1 μM, as shown by ITC. We conclude that ultrasmall nanoparticles can act as versatile carriers for artificial protein ligands and strengthen their interaction with the complementary patches on the protein surface.
- Subjects :
- Amino Acids
Gold
Ligands
Models, Molecular
Metal Nanoparticles
Nanoparticles
Subjects
Details
- Language :
- English
- ISSN :
- 1520-5207
- Volume :
- 125
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- The journal of physical chemistry. B
- Publication Type :
- Academic Journal
- Accession number :
- 33356267
- Full Text :
- https://doi.org/10.1021/acs.jpcb.0c09846