Back to Search
Start Over
On the Liquid Chemistry of the Reactive Nitrogen Species Peroxynitrite and Nitrogen Dioxide Generated by Physical Plasmas.
- Source :
-
Biomolecules [Biomolecules] 2020 Dec 16; Vol. 10 (12). Date of Electronic Publication: 2020 Dec 16. - Publication Year :
- 2020
-
Abstract
- Cold physical plasmas modulate cellular redox signaling processes, leading to the evolution of a number of clinical applications in recent years. They are a source of small reactive species, including reactive nitrogen species (RNS). Wound healing is a major application and, as its physiology involves RNS signaling, a correlation between clinical effectiveness and the activity of plasma-derived RNS seems evident. To investigate the type and reactivity of plasma-derived RNS in aqueous systems, a model with tyrosine as a tracer was utilized. By high-resolution mass spectrometry, 26 different tyrosine derivatives including the physiologic nitrotyrosine were identified. The product pattern was distinctive in terms of plasma parameters, especially gas phase composition. By scavenger experiments and isotopic labelling, gaseous nitric dioxide radicals and liquid phase peroxynitrite ions were determined as dominant RNS. The presence of water molecules in the active plasma favored the generation of peroxynitrite. A pilot study, identifying RNS driven post-translational modifications of proteins in healing human wounds after the treatment with cold plasma (kINPen), demonstrated the presence of in vitro determined chemical pathways. The plasma-driven nitration and nitrosylation of tyrosine allows the conclusion that covalent modification of biomolecules by RNS contributes to the clinically observed impact of cold plasmas.
- Subjects :
- Humans
Hydrogen Peroxide metabolism
Nitrogen chemistry
Nitrosative Stress
Protein Processing, Post-Translational
Signal Transduction
Tyrosine analogs & derivatives
Tyrosine chemistry
Diabetes Complications metabolism
Nitrogen Dioxide metabolism
Oxidation-Reduction
Peroxynitrous Acid metabolism
Reactive Nitrogen Species metabolism
Reactive Oxygen Species metabolism
Wound Healing
Wounds and Injuries metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 2218-273X
- Volume :
- 10
- Issue :
- 12
- Database :
- MEDLINE
- Journal :
- Biomolecules
- Publication Type :
- Academic Journal
- Accession number :
- 33339444
- Full Text :
- https://doi.org/10.3390/biom10121687