Back to Search Start Over

Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites.

Authors :
Veenvliet JV
Bolondi A
Kretzmer H
Haut L
Scholze-Wittler M
Schifferl D
Koch F
Guignard L
Kumar AS
Pustet M
Heimann S
Buschow R
Wittler L
Timmermann B
Meissner A
Herrmann BG
Source :
Science (New York, N.Y.) [Science] 2020 Dec 11; Vol. 370 (6522).
Publication Year :
2020

Abstract

Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.<br /> (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)

Details

Language :
English
ISSN :
1095-9203
Volume :
370
Issue :
6522
Database :
MEDLINE
Journal :
Science (New York, N.Y.)
Publication Type :
Academic Journal
Accession number :
33303587
Full Text :
https://doi.org/10.1126/science.aba4937