Back to Search
Start Over
Mouse embryonic stem cells self-organize into trunk-like structures with neural tube and somites.
- Source :
-
Science (New York, N.Y.) [Science] 2020 Dec 11; Vol. 370 (6522). - Publication Year :
- 2020
-
Abstract
- Post-implantation embryogenesis is a highly dynamic process comprising multiple lineage decisions and morphogenetic changes that are inaccessible to deep analysis in vivo. We found that pluripotent mouse embryonic stem cells (mESCs) form aggregates that upon embedding in an extracellular matrix compound induce the formation of highly organized "trunk-like structures" (TLSs) comprising the neural tube and somites. Comparative single-cell RNA sequencing analysis confirmed that this process is highly analogous to mouse development and follows the same stepwise gene-regulatory program. Tbx6 knockout TLSs developed additional neural tubes mirroring the embryonic mutant phenotype, and chemical modulation could induce excess somite formation. TLSs thus reveal an advanced level of self-organization and provide a powerful platform for investigating post-implantation embryogenesis in a dish.<br /> (Copyright © 2020 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.)
- Subjects :
- Animals
Embryonic Development genetics
Gene Expression Regulation, Developmental
Mice
Mice, Knockout
Pyridines pharmacology
Pyrimidines pharmacology
T-Box Domain Proteins genetics
Wnt Proteins antagonists & inhibitors
Embryonic Development physiology
Mouse Embryonic Stem Cells physiology
Neural Tube embryology
Somites embryology
Subjects
Details
- Language :
- English
- ISSN :
- 1095-9203
- Volume :
- 370
- Issue :
- 6522
- Database :
- MEDLINE
- Journal :
- Science (New York, N.Y.)
- Publication Type :
- Academic Journal
- Accession number :
- 33303587
- Full Text :
- https://doi.org/10.1126/science.aba4937