Back to Search Start Over

Practical considerations for measuring the effective reproductive number, Rt.

Authors :
Gostic KM
McGough L
Baskerville EB
Abbott S
Joshi K
Tedijanto C
Kahn R
Niehus R
Hay JA
De Salazar PM
Hellewell J
Meakin S
Munday JD
Bosse NI
Sherrat K
Thompson RN
White LF
Huisman JS
Scire J
Bonhoeffer S
Stadler T
Wallinga J
Funk S
Lipsitch M
Cobey S
Source :
PLoS computational biology [PLoS Comput Biol] 2020 Dec 10; Vol. 16 (12), pp. e1008409. Date of Electronic Publication: 2020 Dec 10 (Print Publication: 2020).
Publication Year :
2020

Abstract

Estimation of the effective reproductive number Rt is important for detecting changes in disease transmission over time. During the Coronavirus Disease 2019 (COVID-19) pandemic, policy makers and public health officials are using Rt to assess the effectiveness of interventions and to inform policy. However, estimation of Rt from available data presents several challenges, with critical implications for the interpretation of the course of the pandemic. The purpose of this document is to summarize these challenges, illustrate them with examples from synthetic data, and, where possible, make recommendations. For near real-time estimation of Rt, we recommend the approach of Cori and colleagues, which uses data from before time t and empirical estimates of the distribution of time between infections. Methods that require data from after time t, such as Wallinga and Teunis, are conceptually and methodologically less suited for near real-time estimation, but may be appropriate for retrospective analyses of how individuals infected at different time points contributed to the spread. We advise caution when using methods derived from the approach of Bettencourt and Ribeiro, as the resulting Rt estimates may be biased if the underlying structural assumptions are not met. Two key challenges common to all approaches are accurate specification of the generation interval and reconstruction of the time series of new infections from observations occurring long after the moment of transmission. Naive approaches for dealing with observation delays, such as subtracting delays sampled from a distribution, can introduce bias. We provide suggestions for how to mitigate this and other technical challenges and highlight open problems in Rt estimation.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1553-7358
Volume :
16
Issue :
12
Database :
MEDLINE
Journal :
PLoS computational biology
Publication Type :
Academic Journal
Accession number :
33301457
Full Text :
https://doi.org/10.1371/journal.pcbi.1008409